Spaces:
Running
Running
elia-waefler
commited on
Commit
•
e6fff0b
1
Parent(s):
64722c6
pep 8
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import time
|
|
2 |
import streamlit as st
|
3 |
from PyPDF2 import PdfReader
|
4 |
from langchain.text_splitter import CharacterTextSplitter
|
5 |
-
from langchain.embeddings import OpenAIEmbeddings
|
6 |
from langchain.vectorstores import FAISS
|
7 |
from langchain.chat_models import ChatOpenAI
|
8 |
from langchain.memory import ConversationBufferMemory
|
@@ -112,16 +112,11 @@ def handle_userinput(user_question):
|
|
112 |
# Display AI response
|
113 |
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
114 |
|
115 |
-
# THIS DOESNT WORK, SOMEONE PLS FIX
|
116 |
-
# Display source document information if available in the message
|
117 |
-
if hasattr(message, 'source') and message.source:
|
118 |
-
st.write(f"Source Document: {message.source}", unsafe_allow_html=True)
|
119 |
-
|
120 |
|
121 |
def safe_vec_store():
|
122 |
# USE VECTARA INSTEAD
|
123 |
os.makedirs('vectorstore', exist_ok=True)
|
124 |
-
filename = '
|
125 |
file_path = os.path.join('vectorstore', filename)
|
126 |
vector_store = st.session_state.vectorstore
|
127 |
|
@@ -131,18 +126,21 @@ def safe_vec_store():
|
|
131 |
|
132 |
|
133 |
def main():
|
134 |
-
st.set_page_config(page_title="Doc Verify RAG", page_icon=":
|
135 |
st.write(css, unsafe_allow_html=True)
|
|
|
|
|
136 |
if "openai_api_key" not in st.session_state:
|
137 |
st.session_state.openai_api_key = False
|
138 |
if "openai_org" not in st.session_state:
|
139 |
st.session_state.openai_org = False
|
140 |
if "classify" not in st.session_state:
|
141 |
st.session_state.classify = False
|
|
|
142 |
def set_pw():
|
143 |
st.session_state.openai_api_key = True
|
|
|
144 |
st.subheader("Your documents")
|
145 |
-
# OPENAI_ORG_ID = st.text_input("OPENAI ORG ID:")
|
146 |
OPENAI_API_KEY = st.text_input("OPENAI API KEY:", type="password",
|
147 |
disabled=st.session_state.openai_api_key, on_change=set_pw)
|
148 |
if st.session_state.classify:
|
@@ -179,19 +177,18 @@ def main():
|
|
179 |
st.session_state.conversation = get_conversation_chain(vec)
|
180 |
st.success("data loaded")
|
181 |
|
182 |
-
|
183 |
if "conversation" not in st.session_state:
|
184 |
st.session_state.conversation = None
|
185 |
if "chat_history" not in st.session_state:
|
186 |
st.session_state.chat_history = None
|
187 |
|
188 |
-
st.header("Doc Verify RAG :hospital:")
|
189 |
user_question = st.text_input("Ask a question about your documents:")
|
190 |
if user_question:
|
191 |
handle_userinput(user_question)
|
192 |
with st.sidebar:
|
193 |
-
st.subheader("Classification
|
194 |
-
classifier_docs = st.file_uploader("Upload your instructions here and click on 'Process'",
|
|
|
195 |
filenames = [file.name for file in classifier_docs if file is not None]
|
196 |
|
197 |
if st.button("Process Classification"):
|
@@ -200,8 +197,6 @@ def main():
|
|
200 |
st.warning("set classify")
|
201 |
time.sleep(3)
|
202 |
|
203 |
-
|
204 |
-
# Save and Load Embeddings
|
205 |
if st.button("Save Embeddings"):
|
206 |
if "vectorstore" in st.session_state:
|
207 |
safe_vec_store()
|
|
|
2 |
import streamlit as st
|
3 |
from PyPDF2 import PdfReader
|
4 |
from langchain.text_splitter import CharacterTextSplitter
|
5 |
+
from langchain.embeddings import OpenAIEmbeddings
|
6 |
from langchain.vectorstores import FAISS
|
7 |
from langchain.chat_models import ChatOpenAI
|
8 |
from langchain.memory import ConversationBufferMemory
|
|
|
112 |
# Display AI response
|
113 |
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
114 |
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
def safe_vec_store():
|
117 |
# USE VECTARA INSTEAD
|
118 |
os.makedirs('vectorstore', exist_ok=True)
|
119 |
+
filename = 'vectors' + datetime.now().strftime('%Y%m%d%H%M') + '.pkl'
|
120 |
file_path = os.path.join('vectorstore', filename)
|
121 |
vector_store = st.session_state.vectorstore
|
122 |
|
|
|
126 |
|
127 |
|
128 |
def main():
|
129 |
+
st.set_page_config(page_title="Doc Verify RAG", page_icon=":mag:")
|
130 |
st.write(css, unsafe_allow_html=True)
|
131 |
+
st.header("Doc Verify RAG :mag:")
|
132 |
+
|
133 |
if "openai_api_key" not in st.session_state:
|
134 |
st.session_state.openai_api_key = False
|
135 |
if "openai_org" not in st.session_state:
|
136 |
st.session_state.openai_org = False
|
137 |
if "classify" not in st.session_state:
|
138 |
st.session_state.classify = False
|
139 |
+
|
140 |
def set_pw():
|
141 |
st.session_state.openai_api_key = True
|
142 |
+
|
143 |
st.subheader("Your documents")
|
|
|
144 |
OPENAI_API_KEY = st.text_input("OPENAI API KEY:", type="password",
|
145 |
disabled=st.session_state.openai_api_key, on_change=set_pw)
|
146 |
if st.session_state.classify:
|
|
|
177 |
st.session_state.conversation = get_conversation_chain(vec)
|
178 |
st.success("data loaded")
|
179 |
|
|
|
180 |
if "conversation" not in st.session_state:
|
181 |
st.session_state.conversation = None
|
182 |
if "chat_history" not in st.session_state:
|
183 |
st.session_state.chat_history = None
|
184 |
|
|
|
185 |
user_question = st.text_input("Ask a question about your documents:")
|
186 |
if user_question:
|
187 |
handle_userinput(user_question)
|
188 |
with st.sidebar:
|
189 |
+
st.subheader("Classification instructions")
|
190 |
+
classifier_docs = st.file_uploader("Upload your instructions here and click on 'Process'",
|
191 |
+
accept_multiple_files=True)
|
192 |
filenames = [file.name for file in classifier_docs if file is not None]
|
193 |
|
194 |
if st.button("Process Classification"):
|
|
|
197 |
st.warning("set classify")
|
198 |
time.sleep(3)
|
199 |
|
|
|
|
|
200 |
if st.button("Save Embeddings"):
|
201 |
if "vectorstore" in st.session_state:
|
202 |
safe_vec_store()
|