import streamlit as st from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain import embeddings from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings from langchain.vectorstores import FAISS from langchain.vectorstores import faiss from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from html_templates import css, bot_template, user_template from langchain.llms import HuggingFaceHub import os import pickle from datetime import datetime def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text def get_text_chunks(text): text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) return chunks def get_vectorstore(text_chunks): embeddings = OpenAIEmbeddings() # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) return vectorstore def get_conversation_chain(vectorstore): llm = ChatOpenAI() # llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512}) memory = ConversationBufferMemory( memory_key='chat_history', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory ) return conversation_chain def handle_userinput(user_question): response = st.session_state.conversation({'question': user_question}) st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): # Display user message if i % 2 == 0: st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True) else: print(message) # Display AI response st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True) # Display source document information if available in the message if hasattr(message, 'source') and message.source: st.write(f"Source Document: {message.source}", unsafe_allow_html=True) def safe_vec_store(): os.makedirs('vectorstore', exist_ok=True) filename = 'vectores' + datetime.now().strftime('%Y%m%d%H%M') + '.pkl' file_path = os.path.join('vectorstore', filename) vector_store = st.session_state.vectorstore # Serialize and save the entire FAISS object using pickle with open(file_path, 'wb') as f: pickle.dump(vector_store, f) def main(): load_dotenv() st.set_page_config(page_title="DOC Verify RAG", page_icon=":hospital:") st.write(css, unsafe_allow_html=True) st.subheader("Your documents") pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=True) filenames = [file.name for file in pdf_docs if file is not None] if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None st.header("DOC Verify RAG :hospital:") user_question = st.text_input("Ask a question about your documents:") if user_question: handle_userinput(user_question) with st.sidebar: st.subheader("Classification Instrucitons") classifier_docs = st.file_uploader("Upload your instructions here and click on 'Process'", accept_multiple_files=True) filenames = [file.name for file in classifier_docs if file is not None] if st.button("Process"): with st.spinner("Processing"): loaded_vec_store = None for filename in filenames: if ".pkl" in filename: file_path = os.path.join('vectorstore', filename) with open(file_path, 'rb') as f: loaded_vec_store = pickle.load(f) raw_text = get_pdf_text(pdf_docs) text_chunks = get_text_chunks(raw_text) vec = get_vectorstore(text_chunks) if loaded_vec_store: vec.merge_from(loaded_vec_store) st.warning("loaded vectorstore") if "vectorstore" in st.session_state: vec.merge_from(st.session_state.vectorstore) st.warning("merged to existing") st.session_state.vectorstore = vec st.session_state.conversation = get_conversation_chain(vec) st.success("data loaded") # Save and Load Embeddings if st.button("Save Embeddings"): if "vectorstore" in st.session_state: safe_vec_store() # st.session_state.vectorstore.save_local("faiss_index") st.sidebar.success("safed") else: st.sidebar.warning("No embeddings to save. Please process documents first.") if st.button("Load Embeddings"): st.warning("this function is not in use, just upload the vectorstore") if __name__ == '__main__': main()