import gradio as gr from langchain.chains import RetrievalQA from langchain.embeddings import HuggingFaceEmbeddings from langchain.llms import HuggingFacePipeline from langchain.memory import ConversationBufferWindowMemory from langchain.vectorstores import Chroma from langchain import PromptTemplate, LLMChain from transformers import AutoTokenizer, pipeline from typing import Dict, Any import torch # class AnswerConversationBufferMemory(ConversationBufferMemory): class AnswerConversationBufferMemory(ConversationBufferWindowMemory): def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: return super(AnswerConversationBufferMemory, self).save_context(inputs,{'response': outputs['result']}) def clean_text(text): # Remove excessive whitespace cleaned_text = ' '.join(text.split()) # Keep max one newline character cleaned_text = cleaned_text.replace('\n\n', '\n') return cleaned_text def chatbot_llm_response(llm_response): text = clean_text(llm_response['result']) + '\nSources:\n' for source in llm_response["source_documents"]: text += source.metadata['source'] + '\n' return text model_name = "databricks/dolly-v2-3b" tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left") generate_text = pipeline(model=model_name, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", return_full_text=True, max_new_tokens=256, top_p=0.95, top_k=50) prompt = PromptTemplate( input_variables=["instruction"], template="{instruction}") hf_pipeline = HuggingFacePipeline(pipeline=generate_text) llm_chain = LLMChain(llm=hf_pipeline, prompt=prompt) # top #2 when task = Retrieval June 2023 for under ~500 MB model_name = "intfloat/e5-base-v2" hf = HuggingFaceEmbeddings(model_name=model_name) # Load up Vector Database persist_directory = 'db' vectordb = Chroma(persist_directory=persist_directory, embedding_function=hf) vectordb.get() retriever = vectordb.as_retriever(search_kwargs={'k':3}) # Configure Conversation Chain memory = AnswerConversationBufferMemory(k=3) qa_chain_with_memory = RetrievalQA.from_chain_type(llm=hf_pipeline, chain_type="stuff", retriever=retriever, return_source_documents=True, memory=memory) # try to set the tone template = ''' You are the assistant to a tradesperson with knowledge of the Ontario Building Code. You provide specific details using the context given and the users question. If you don't know the answer, you truthfully say you don't know and don't try to make up an answer. ---------------- {context} Question: {question} Helpful Answer:''' qa_chain_with_memory.combine_documents_chain.llm_chain.prompt.template = template examples = ["What's the minimum pipe size needed for sinks, toilets, and showers?", "Are there any specific rules for installing backflow prevention devices?", "Can you guide me on the approved materials and methods for installing underground sewer lines?", "How much clearance is required for electrical panels and equipment like switchboards?", "Are there any restrictions or guidelines for outdoor electrical wiring and fixtures?", "Could you explain the proper bonding and grounding requirements for commercial buildings?", "What's the load-bearing capacity for beams and columns?", "Are there any specific rules for designing buildings to withstand earthquakes?", "Can you provide information on the fire resistance ratings for walls, floors, and roofs?", "What are the specific building code requirements for designing accessible entrances and pathways?", "Can you explain the regulations for fire protection systems and how they should be integrated into architectural designs?", "What are the foundation requirements in areas prone to earthquakes?", "Are there any restrictions or guidelines for installing electrical wiring and fixtures in wet locations?" ] def process_example(args): for x in generate(args): pass return x def generate(instruction): response = qa_chain_with_memory(instruction) processed_response = chatbot_llm_response(response) result = "" for word in processed_response.split(" "): result += word + " " yield result with gr.Blocks(analytics_enabled=False) as demo: with gr.Column(): gr.Markdown("""# 🐑 Dolly-Expert-Lite Dolly-Expert-Lite is a bot for domain specific question answering. Currently powered by the new Dolly-v2-3b open source model. It's expert systems in the era of LLMs! ## 🏗️ Building Code Expert In this example deployment, Dolly-Expert-Lite retrieves information via a vector database made using the [Ontario (Canada) Building Code](https://www.buildingcode.online) sitemap LangChain loader. For details on the original Dolly v2 model, please refer to the [model card](https://huggingface.co/databricks/dolly-v2-12b) ### Type in the box below and click to ask the expert! """ ) with gr.Row(): with gr.Column(scale=3): instruction = gr.Textbox(placeholder="Enter your question here", label="Question", elem_id="q-input") with gr.Box(): gr.Markdown("**Answer**") output = gr.Markdown(elem_id="q-output") submit = gr.Button("Generate", variant="primary") clear = gr.Button("Clear", variant="secondary") gr.Examples( examples=examples, inputs=[instruction], cache_examples=False, fn=process_example, outputs=[output], ) submit.click(generate, inputs=[instruction], outputs=[output]) clear.click(lambda: None, [], [output]) instruction.submit(generate, inputs=[instruction], outputs=[output]) demo.queue(concurrency_count=16).launch() demo.launch()