import os, sys import gradio as gr from src.gradio_demo import SadTalker try: import webui # in webui in_webui = True except: in_webui = False def toggle_audio_file(choice): if choice == False: return gr.update(visible=True), gr.update(visible=False) else: return gr.update(visible=False), gr.update(visible=True) def ref_video_fn(path_of_ref_video): if path_of_ref_video is not None: return gr.update(value=True) else: return gr.update(value=False) sad_talker = SadTalker("checkpoints", "src/config", lazy_load=True) with gr.Blocks(analytics_enabled=False) as demo: with gr.Row().style(equal_height=False): with gr.Column(variant='panel'): with gr.Tabs(elem_id="sadtalker_source_image"): with gr.TabItem('Upload image'): with gr.Row(): source_image = gr.Image(label="Source image", source="upload", type="filepath", elem_id="img2img_image").style(width=512) with gr.Tabs(elem_id="sadtalker_driven_audio"): with gr.TabItem('Upload OR TTS'): with gr.Column(variant='panel'): driven_audio = gr.Audio(label="Input audio", source="upload", type="filepath") with gr.Column(variant='panel'): with gr.Tabs(elem_id="sadtalker_checkbox"): with gr.TabItem('Settings'): with gr.Column(variant='panel'): pose_style = gr.Slider(minimum=0, maximum=46, step=1, label="Pose style", value=0) # size_of_image = gr.Radio([256, 512], value=512, label='face model resolution', info="use 256/512 model?") # preprocess_type = gr.Radio(['crop', 'resize','full', 'extcrop', 'extfull'], value='full', label='preprocess', info="How to handle input image?") is_still_mode = gr.Checkbox(label="Still Mode (fewer hand motion, works with preprocess `full`)") batch_size = gr.Slider(label="batch size in generation", step=1, maximum=10, value=2) enhancer = gr.Checkbox(label="GFPGAN as Face enhancer") submit = gr.Button('Generate', elem_id="sadtalker_generate", variant='primary') with gr.Tabs(elem_id="sadtalker_genearted"): gen_video = gr.Video(label="Generated video", format="mp4").style(width=256) submit.click( fn=sad_talker.test, inputs=[source_image, driven_audio, preprocess_type, is_still_mode, enhancer, batch_size, size_of_image, pose_style ], outputs=[gen_video] ) demo.queue().launch()