File size: 4,193 Bytes
0dec378
0cfb4a5
 
 
 
0dec378
 
 
0a67e9a
 
a484b84
0cfb4a5
 
0dec378
 
b206729
0dec378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79024bb
 
b206729
b37d7c8
79024bb
3d2ee8a
0cfb4a5
 
0dec378
ac36fcc
0cfb4a5
 
ac36fcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b20c582
 
ac36fcc
b20c582
ac36fcc
 
b20c582
 
 
 
ac36fcc
b20c582
0cfb4a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a484b84
1c144e4
b20c582
79024bb
6c31c17
 
1c144e4
6c31c17
 
0cfb4a5
0a67e9a
79024bb
7f2fa6c
8221a06
b0241f6
b20c582
e201fee
289d5f1
b5806de
0dec378
 
b206729
b20c582
0dec378
b20c582
0dec378
b20c582
0dec378
0cfb4a5
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import gradio as gr
import os
from gradio_client import Client, handle_file
from huggingface_hub import login
from PIL import Image
import numpy as np
import random
from translatepy import Translator
import requests
import re
import asyncio

login(token=os.environ.get("HF_TOKEN", None), username=os.environ.get("HF_USERNAME", None))

translator = Translator()
basemodel = "black-forest-labs/FLUX.1-dev"
MAX_SEED = np.iinfo(np.int32).max

CSS = """
footer {
    visibility: hidden;
}
"""

JS = """function () {
  gradioURL = window.location.href
  if (!gradioURL.endsWith('?__theme=dark')) {
    window.location.replace(gradioURL + '?__theme=dark');
  }
}"""

def enable_lora(lora_add):
    if not lora_add:
        return basemodel
    else:
        return lora_add

def handle_file(img_path):
    return Image.open(img_path)

def get_upscale_finegrain(prompt, img_path, upscale_factor):
    if upscale_factor == 0:
        return handle_file(img_path)
    client = Client("finegrain/finegrain-image-enhancer")
    result = client.predict(
        input_image=handle_file(img_path),
        prompt=prompt,
        negative_prompt="",
        seed=42,
        upscale_factor=upscale_factor,
        controlnet_scale=0.6,
        controlnet_decay=1,
        condition_scale=6,
        tile_width=112,
        tile_height=144,
        denoise_strength=0.35,
        num_inference_steps=18,
        solver="DDIM",
        api_name="/process"
    )
    print(result)
    return result[1]

async def upscale_image(image, upscale_factor):
    try:
        result = get_upscale_finegrain(
            prompt="",
            img_path=image,
            upscale_factor=upscale_factor
        )
    except Exception as e:
        raise gr.Error(f"Error in {e}")
    
    return result

async def generate_image(
    prompt:str,
    model:str,
    lora_word:str,
    width:int=768,
    height:int=1024,
    scales:float=3.5,
    steps:int=24,
    seed:int=-1
):
    if seed == -1:
        seed = random.randint(0, MAX_SEED)
    seed = int(seed)
    print(f'prompt:{prompt}')
    
    text = str(translator.translate(prompt, 'English')) + "," + lora_word

    try:
        image = gr.Image(type="pil", image=gr.processing_utils.encode_pil_image(text_to_image(text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)))
    except Exception as e:
        raise gr.Error(f"Error in {e}")
    
    return image, seed

async def gen(
    prompt:str,
    lora_add:str="XLabs-AI/flux-RealismLora",
    lora_word:str="",
    width:int=768,
    height:int=1024,
    scales:float=3.5,
    steps:int=24,
    seed:int=-1,
    upscale_factor:int=0
):
    model = enable_lora(lora_add)
    image, seed = await generate_image(prompt,model,lora_word,width,height,scales,steps,seed)
    
    upscaled_image = await upscale_image(image, upscale_factor)
    return upscaled_image, seed
     
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
    gr.HTML("<h1><center>Flux Lab Light</center></h1>")
    with gr.Row():
        with gr.Column(scale=4):
            with gr.Row():
                img = gr.Image(type="filepath", label='Imagen generada por Flux', height=600)
            with gr.Row():
                prompt = gr.Textbox(label='Ingresa tu prompt (Multi-Idiomas)', placeholder="Ingresa prompt...", scale=6)
                sendBtn = gr.Button(scale=1, variant='primary')
        with gr.Accordion("Opciones avanzadas", open=True):
            with gr.Column(scale=1):
                width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=768)
                height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=1024)
                scales = gr.Slider(label="Guía", minimum=3.5, maximum=7, step=0.1, value=3.5)
                steps = gr.Slider(label="Pasos", minimum=1, maximum=50, step=1)
                upscale_factor = gr.Slider(label="Factor de escala", minimum=0, maximum=4, step=1, value=0)
                seed = gr.Number(label="Semilla", value=-1)
                sendBtn.click(gen, inputs=[prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor], outputs=[img])
demo.launch()