File size: 5,539 Bytes
0cfb4a5
481dde5
d4fba6d
0dec378
 
de6051a
0dec378
0a67e9a
 
a484b84
d4fba6d
2fc432b
 
 
1a52ee5
32fdddd
219d097
471c590
e3be785
481dde5
 
 
 
 
 
 
 
 
 
 
 
 
 
32fdddd
e3be785
 
2fc432b
32fdddd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a52ee5
481dde5
 
 
 
 
 
 
 
 
32fdddd
2f35681
32fdddd
 
 
 
 
e3be785
 
481dde5
 
 
 
32fdddd
 
 
e3be785
32fdddd
2fc432b
e3be785
32fdddd
e3be785
 
32fdddd
e3be785
3b4ee8c
32fdddd
3b4ee8c
32fdddd
 
 
 
 
 
 
481dde5
5e03798
32fdddd
 
 
 
 
 
 
 
5e03798
 
 
 
 
 
 
481dde5
5e03798
 
32fdddd
5e03798
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
import torch
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
import requests
import re
import asyncio
from PIL import Image
from gradio_client import Client, handle_file
from huggingface_hub import login
from gradio_imageslider import ImageSlider

MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN = os.environ.get("HF_TOKEN")
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")

if not os.path.exists('GFPGANv1.4.pth'):
    os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_path = 'GFPGANv1.4.pth'
gfpgan = GFPGANer(
    model_path=model_path,
    upscale_factor=4,
    arch='clean',
    channel_multiplier=2,
    model_name='GPFGAN',
    device=device
)

def enable_lora(lora_add, basemodel):
    return basemodel if not lora_add else lora_add

async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
    try:
        if seed == -1:
            seed = random.randint(0, MAX_SEED)
        seed = int(seed)
        text = str(Translator().translate(prompt, 'English')) + "," + lora_word
        client = AsyncInferenceClient()
        image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
        return image, seed
    except Exception as e:
        print(f"Error generating image: {e}")
        return None, None

def get_upscale_finegrain(prompt, img_path, upscale_factor):
    try:
        client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
        result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
        return result[1]
    except Exception as e:
        print(f"Error upscale image: {e}")
        return None

def get_upscale_gfpgan(prompt, img_path):
    try:
        img = gfpgan.enhance(img_path)
        return img
    except Exception as e:
        print(f"Error upscale image: {e}")
        return None

async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora, upscale_model):
    model = enable_lora(lora_model, basemodel) if process_lora else basemodel
    image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
    if image is None:
        return [None, None]
    
    image_path = "temp_image.jpg"
    image.save(image_path, format="JPEG")
    
    if process_upscale:
        if upscale_model == "FineGrain":
            upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
        elif upscale_model == "GPFGAN":
            upscale_image = get_upscale_gfpgan(prompt, image_path)
        upscale_image_path = "upscale_image.jpg"
        upscale_image.save(upscale_image_path, format="JPEG")
        return [image_path, upscale_image_path]
    else:
        return [image_path, image_path]

css = """
#col-container{ margin: 0 auto; max-width: 1024px;}
"""

with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
    with gr.Column(elem_id="col-container"):
        with gr.Row():
            with gr.Column(scale=3):
                output_res = ImageSlider(label="Flux / Upscaled")
            with gr.Column(scale=2):
                prompt = gr.Textbox(label="Descripción de imágen")
                basemodel_choice = gr.Dropdown(label="Modelo", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"], value="black-forest-labs/FLUX.1-schnell")
                lora_model_choice = gr.Dropdown(label="LORA Realismo", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"], value="XLabs-AI/flux-RealismLora")
                process_lora = gr.Checkbox(label="Procesar LORA")
                process_upscale = gr.Checkbox(label="Procesar Escalador")
                upscale_factor = gr.Radio(label="Factor de Escala", choices=[2, 4, 8], value=2)
                upscale_model = gr.Radio(label="Modelo de Escalado", choices=["FineGrain", "GPFGAN"], value="FineGrain")
                
                with gr.Accordion(label="Opciones Avanzadas", open=False):
                    width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=1280)
                    height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=768)
                    scales = gr.Slider(label="Escalas", minimum=3.5, maximum=7, step=0.1, value=3.5)
                    steps = gr.Slider(label="Pasos", minimum=1, maximum=100, step=1, value=24)
                    seed = gr.Slider(label="Semillas", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
            
                submit_btn = gr.Button("Crear", scale=1)
                submit_btn.click(
                    fn=lambda: None,
                    inputs=None,
                    outputs=[output_res],
                    queue=False
                ).then(
                    fn=gen,
                    inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora, upscale_model],
                    outputs=[output_res]
                )

demo.launch()