Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,12 +4,11 @@ import gradio as gr
|
|
4 |
import numpy as np
|
5 |
import random
|
6 |
#from diffusers import FluxPipeline
|
7 |
-
from huggingface_hub import
|
8 |
from translatepy import Translator
|
9 |
#from huggingface_hub import hf_hub_download
|
10 |
import requests
|
11 |
import re
|
12 |
-
import asyncio
|
13 |
from PIL import Image
|
14 |
|
15 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
@@ -32,8 +31,7 @@ JS = """function () {
|
|
32 |
}
|
33 |
}"""
|
34 |
|
35 |
-
|
36 |
-
client2 = AsyncInferenceClient()
|
37 |
|
38 |
def enable_lora(lora_in, lora_add):
|
39 |
if not lora_in and not lora_add:
|
@@ -43,7 +41,7 @@ def enable_lora(lora_in, lora_add):
|
|
43 |
lora_in = lora_add
|
44 |
return lora_in
|
45 |
|
46 |
-
|
47 |
prompt:str,
|
48 |
model:str,
|
49 |
width:int=768,
|
@@ -61,7 +59,7 @@ async def generate_image(
|
|
61 |
|
62 |
#generator = torch.Generator().manual_seed(seed)
|
63 |
|
64 |
-
image1 =
|
65 |
prompt=text,
|
66 |
height=height,
|
67 |
width=width,
|
@@ -69,7 +67,7 @@ async def generate_image(
|
|
69 |
num_inference_steps=steps,
|
70 |
model=basemodel,
|
71 |
)
|
72 |
-
image2 =
|
73 |
prompt=text,
|
74 |
height=height,
|
75 |
width=width,
|
@@ -79,7 +77,7 @@ async def generate_image(
|
|
79 |
)
|
80 |
return image1, image2, seed
|
81 |
|
82 |
-
|
83 |
prompt:str,
|
84 |
lora_in:str="",
|
85 |
lora_add:str="",
|
@@ -92,7 +90,7 @@ async def gen(
|
|
92 |
):
|
93 |
model = enable_lora(lora_in, lora_add)
|
94 |
print(model)
|
95 |
-
image1, image2, seed =
|
96 |
return image1, image2, seed
|
97 |
|
98 |
|
|
|
4 |
import numpy as np
|
5 |
import random
|
6 |
#from diffusers import FluxPipeline
|
7 |
+
from huggingface_hub import InferenceClient
|
8 |
from translatepy import Translator
|
9 |
#from huggingface_hub import hf_hub_download
|
10 |
import requests
|
11 |
import re
|
|
|
12 |
from PIL import Image
|
13 |
|
14 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
|
|
31 |
}
|
32 |
}"""
|
33 |
|
34 |
+
client = InferenceClient()
|
|
|
35 |
|
36 |
def enable_lora(lora_in, lora_add):
|
37 |
if not lora_in and not lora_add:
|
|
|
41 |
lora_in = lora_add
|
42 |
return lora_in
|
43 |
|
44 |
+
def generate_image(
|
45 |
prompt:str,
|
46 |
model:str,
|
47 |
width:int=768,
|
|
|
59 |
|
60 |
#generator = torch.Generator().manual_seed(seed)
|
61 |
|
62 |
+
image1 = client.text_to_image(
|
63 |
prompt=text,
|
64 |
height=height,
|
65 |
width=width,
|
|
|
67 |
num_inference_steps=steps,
|
68 |
model=basemodel,
|
69 |
)
|
70 |
+
image2 = client.text_to_image(
|
71 |
prompt=text,
|
72 |
height=height,
|
73 |
width=width,
|
|
|
77 |
)
|
78 |
return image1, image2, seed
|
79 |
|
80 |
+
def gen(
|
81 |
prompt:str,
|
82 |
lora_in:str="",
|
83 |
lora_add:str="",
|
|
|
90 |
):
|
91 |
model = enable_lora(lora_in, lora_add)
|
92 |
print(model)
|
93 |
+
image1, image2, seed = generate_image(prompt,model,width,height,scales,steps,seed)
|
94 |
return image1, image2, seed
|
95 |
|
96 |
|