Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
from pathlib import Path
|
2 |
from PIL import Image
|
3 |
import streamlit as st
|
4 |
-
import os, random, numpy as np, yaml, time
|
5 |
-
from dataclasses import dataclass
|
6 |
from typing import List
|
7 |
from huggingface_hub import InferenceClient
|
8 |
|
@@ -21,16 +21,28 @@ class AppConfig:
|
|
21 |
CLEANUP_DAYS: int = 7
|
22 |
|
23 |
MAX_SEED = AppConfig.MAX_SEED
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
DATA_PATH = Path("./data")
|
26 |
DATA_PATH.mkdir(exist_ok=True)
|
27 |
-
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN")
|
28 |
|
29 |
-
def
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
def authenticate_user(username, password):
|
36 |
return username == credentials["username"] and password == credentials["password"]
|
@@ -38,15 +50,36 @@ def authenticate_user(username, password):
|
|
38 |
def list_saved_images():
|
39 |
return sorted(DATA_PATH.glob("*.jpg"), key=lambda x: x.stat().st_mtime, reverse=True)
|
40 |
|
41 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
try:
|
43 |
enhanced = client.text_generation(
|
44 |
-
"
|
45 |
model="mistralai/Mixtral-8x7B-v0.1",
|
46 |
max_length=200
|
47 |
)
|
48 |
return enhanced[:200]
|
49 |
-
except:
|
|
|
50 |
return text[:200]
|
51 |
|
52 |
def save_prompt(image_name, prompt):
|
@@ -55,14 +88,14 @@ def save_prompt(image_name, prompt):
|
|
55 |
|
56 |
def generate_variations(prompt, num_variants=8, use_enhanced=True):
|
57 |
instructions = [
|
58 |
-
"
|
59 |
-
"
|
60 |
-
"
|
61 |
-
"
|
62 |
-
"
|
63 |
-
"
|
64 |
-
"
|
65 |
-
"
|
66 |
]
|
67 |
if use_enhanced:
|
68 |
prompts = [enhance_prompt(f"{instructions[i % len(instructions)]}{prompt}") for i in range(num_variants)]
|
@@ -70,15 +103,25 @@ def generate_variations(prompt, num_variants=8, use_enhanced=True):
|
|
70 |
prompts = [prompt] * num_variants
|
71 |
return prompts
|
72 |
|
73 |
-
def generate_image(prompt, width, height, seed, model_name):
|
|
|
|
|
|
|
|
|
74 |
try:
|
75 |
with st.spinner("Generando imagen..."):
|
76 |
seed = int(seed) if seed != -1 else random.randint(0, AppConfig.MAX_SEED)
|
77 |
enhanced_prompt = enhance_prompt(prompt)
|
78 |
-
image = client.text_to_image(
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
return image, seed, enhanced_prompt
|
80 |
except Exception as e:
|
81 |
-
st.error(f"
|
82 |
return None, seed, None
|
83 |
|
84 |
def gen(prompts, width, height, model_name, num_variants=8):
|
@@ -101,6 +144,22 @@ def gen(prompts, width, height, model_name, num_variants=8):
|
|
101 |
st.success(f"Imagen {i+1} generada")
|
102 |
return images
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
def display_gallery():
|
105 |
st.header("Galer铆a de Im谩genes Guardadas")
|
106 |
images = list_saved_images()
|
@@ -111,27 +170,17 @@ def display_gallery():
|
|
111 |
with cols[i % 4]:
|
112 |
st.image(str(image_file), use_column_width=True)
|
113 |
prompt = get_prompt_for_image(image_file.name)
|
114 |
-
st.caption(prompt[:
|
115 |
if st.button(f"Borrar", key=f"delete_{i}_{image_file}"):
|
116 |
if image_file.exists():
|
117 |
os.remove(image_file)
|
118 |
st.success("Imagen borrada")
|
119 |
st.rerun()
|
120 |
|
121 |
-
def get_prompt_for_image(image_name):
|
122 |
-
try:
|
123 |
-
with open(DATA_PATH / "prompts.txt", "r") as f:
|
124 |
-
for line in f:
|
125 |
-
if line.startswith(image_name):
|
126 |
-
return line.split(": ", 1)[1].strip()
|
127 |
-
except FileNotFoundError:
|
128 |
-
return "No hay prompt asociado"
|
129 |
-
return "No hay prompt asociado"
|
130 |
-
|
131 |
def login_form():
|
132 |
st.title("Iniciar Sesi贸n")
|
133 |
username = st.text_input("Usuario", value="admin")
|
134 |
-
password = st.text_input("Contrase帽a", value="
|
135 |
if st.button("Iniciar Sesi贸n"):
|
136 |
if authenticate_user(username, password):
|
137 |
st.session_state['authenticated'] = True
|
@@ -155,6 +204,10 @@ def main():
|
|
155 |
|
156 |
st.title("Flux +Upscale +Prompt Enhancer")
|
157 |
|
|
|
|
|
|
|
|
|
158 |
prompt = st.sidebar.text_area("Descripci贸n de la imagen", height=150, max_chars=500)
|
159 |
format_option = st.sidebar.selectbox("Formato", ["9:16", "16:9", "1:1"])
|
160 |
model_option = st.sidebar.selectbox("Modelo", ["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-dev"])
|
@@ -168,7 +221,6 @@ def main():
|
|
168 |
if st.sidebar.button("Generar Im谩genes"):
|
169 |
generated_images = gen(prompts, width, height, model_option, num_variants)
|
170 |
|
171 |
-
# Display generated images with their prompts
|
172 |
st.header("Im谩genes Generadas")
|
173 |
cols = st.columns(4)
|
174 |
for i, (image_path, image_prompt) in enumerate(generated_images):
|
|
|
1 |
from pathlib import Path
|
2 |
from PIL import Image
|
3 |
import streamlit as st
|
4 |
+
import os, random, numpy as np, yaml, time
|
5 |
+
from dataclasses import dataclass
|
6 |
from typing import List
|
7 |
from huggingface_hub import InferenceClient
|
8 |
|
|
|
21 |
CLEANUP_DAYS: int = 7
|
22 |
|
23 |
MAX_SEED = AppConfig.MAX_SEED
|
24 |
+
|
25 |
+
HF_TOKENS = [
|
26 |
+
os.environ.get("HF_TOKEN1"),
|
27 |
+
os.environ.get("HF_TOKEN2"),
|
28 |
+
os.environ.get("HF_TOKEN3")
|
29 |
+
]
|
30 |
+
|
31 |
DATA_PATH = Path("./data")
|
32 |
DATA_PATH.mkdir(exist_ok=True)
|
|
|
33 |
|
34 |
+
def get_inference_client(tokens=HF_TOKENS):
|
35 |
+
for token in tokens:
|
36 |
+
try:
|
37 |
+
client = InferenceClient(token=token)
|
38 |
+
client.text_generation("Test", max_length=10)
|
39 |
+
return client
|
40 |
+
except Exception as e:
|
41 |
+
st.warning(f"Token fallido: {token[:5]}...")
|
42 |
+
st.error("Todos los tokens de HuggingFace han fallado")
|
43 |
+
return None
|
44 |
+
|
45 |
+
client = get_inference_client()
|
46 |
|
47 |
def authenticate_user(username, password):
|
48 |
return username == credentials["username"] and password == credentials["password"]
|
|
|
50 |
def list_saved_images():
|
51 |
return sorted(DATA_PATH.glob("*.jpg"), key=lambda x: x.stat().st_mtime, reverse=True)
|
52 |
|
53 |
+
def get_image_description(image_path, original_prompt):
|
54 |
+
if not client:
|
55 |
+
return original_prompt
|
56 |
+
|
57 |
+
try:
|
58 |
+
description_prompt = f"Analyze this image in great detail. The original prompt was: {original_prompt}. Provide a comprehensive and creative description focusing on visual elements, mood, and artistic style."
|
59 |
+
|
60 |
+
description = client.text_generation(
|
61 |
+
description_prompt,
|
62 |
+
model="mistralai/Mixtral-8x7B-v0.1",
|
63 |
+
max_new_tokens=150
|
64 |
+
)
|
65 |
+
|
66 |
+
return description.strip()
|
67 |
+
except Exception as e:
|
68 |
+
st.warning(f"Image description generation error: {e}")
|
69 |
+
return original_prompt
|
70 |
+
|
71 |
+
def enhance_prompt(text, client=client):
|
72 |
+
if not client:
|
73 |
+
return text[:200]
|
74 |
try:
|
75 |
enhanced = client.text_generation(
|
76 |
+
"Generate a photorealistic, detailed txt2img prompt in 200 characters maximum: " + text,
|
77 |
model="mistralai/Mixtral-8x7B-v0.1",
|
78 |
max_length=200
|
79 |
)
|
80 |
return enhanced[:200]
|
81 |
+
except Exception as e:
|
82 |
+
st.warning(f"Prompt enhancement error: {e}")
|
83 |
return text[:200]
|
84 |
|
85 |
def save_prompt(image_name, prompt):
|
|
|
88 |
|
89 |
def generate_variations(prompt, num_variants=8, use_enhanced=True):
|
90 |
instructions = [
|
91 |
+
"Photorealistic description for txt2img: ",
|
92 |
+
"Creative, realistic text-to-image prompt: ",
|
93 |
+
"Descriptive, true-to-life txt2img prompt: ",
|
94 |
+
"Photorealistic scene with detailed illumination: ",
|
95 |
+
"Realistic, elegant txt2img prompt: ",
|
96 |
+
"Visually dynamic, hyperrealistic prompt: ",
|
97 |
+
"Cinematic txt2img with hyperrealistic elements: ",
|
98 |
+
"Lifelike txt2img, focusing on photorealistic depth: "
|
99 |
]
|
100 |
if use_enhanced:
|
101 |
prompts = [enhance_prompt(f"{instructions[i % len(instructions)]}{prompt}") for i in range(num_variants)]
|
|
|
103 |
prompts = [prompt] * num_variants
|
104 |
return prompts
|
105 |
|
106 |
+
def generate_image(prompt, width, height, seed, model_name, client=client):
|
107 |
+
if not client:
|
108 |
+
st.error("No Hugging Face client available")
|
109 |
+
return None, seed, None
|
110 |
+
|
111 |
try:
|
112 |
with st.spinner("Generando imagen..."):
|
113 |
seed = int(seed) if seed != -1 else random.randint(0, AppConfig.MAX_SEED)
|
114 |
enhanced_prompt = enhance_prompt(prompt)
|
115 |
+
image = client.text_to_image(
|
116 |
+
prompt=enhanced_prompt,
|
117 |
+
height=height,
|
118 |
+
width=width,
|
119 |
+
model=model_name,
|
120 |
+
seed=seed
|
121 |
+
)
|
122 |
return image, seed, enhanced_prompt
|
123 |
except Exception as e:
|
124 |
+
st.error(f"Image generation error: {e}")
|
125 |
return None, seed, None
|
126 |
|
127 |
def gen(prompts, width, height, model_name, num_variants=8):
|
|
|
144 |
st.success(f"Imagen {i+1} generada")
|
145 |
return images
|
146 |
|
147 |
+
def get_prompt_for_image(image_name):
|
148 |
+
try:
|
149 |
+
with open(DATA_PATH / "prompts.txt", "r") as f:
|
150 |
+
for line in f:
|
151 |
+
if line.startswith(image_name):
|
152 |
+
original_prompt = line.split(": ", 1)[1].strip()
|
153 |
+
image_path = DATA_PATH / image_name
|
154 |
+
|
155 |
+
if image_path.exists():
|
156 |
+
return get_image_description(str(image_path), original_prompt)
|
157 |
+
|
158 |
+
return original_prompt
|
159 |
+
except FileNotFoundError:
|
160 |
+
return "No hay prompt asociado"
|
161 |
+
return "No hay prompt asociado"
|
162 |
+
|
163 |
def display_gallery():
|
164 |
st.header("Galer铆a de Im谩genes Guardadas")
|
165 |
images = list_saved_images()
|
|
|
170 |
with cols[i % 4]:
|
171 |
st.image(str(image_file), use_column_width=True)
|
172 |
prompt = get_prompt_for_image(image_file.name)
|
173 |
+
st.caption(prompt[:250])
|
174 |
if st.button(f"Borrar", key=f"delete_{i}_{image_file}"):
|
175 |
if image_file.exists():
|
176 |
os.remove(image_file)
|
177 |
st.success("Imagen borrada")
|
178 |
st.rerun()
|
179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
def login_form():
|
181 |
st.title("Iniciar Sesi贸n")
|
182 |
username = st.text_input("Usuario", value="admin")
|
183 |
+
password = st.text_input("Contrase帽a", value="", type="password")
|
184 |
if st.button("Iniciar Sesi贸n"):
|
185 |
if authenticate_user(username, password):
|
186 |
st.session_state['authenticated'] = True
|
|
|
204 |
|
205 |
st.title("Flux +Upscale +Prompt Enhancer")
|
206 |
|
207 |
+
if not client:
|
208 |
+
st.error("No se pudo establecer conexi贸n con Hugging Face. Verifique sus tokens.")
|
209 |
+
return
|
210 |
+
|
211 |
prompt = st.sidebar.text_area("Descripci贸n de la imagen", height=150, max_chars=500)
|
212 |
format_option = st.sidebar.selectbox("Formato", ["9:16", "16:9", "1:1"])
|
213 |
model_option = st.sidebar.selectbox("Modelo", ["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-dev"])
|
|
|
221 |
if st.sidebar.button("Generar Im谩genes"):
|
222 |
generated_images = gen(prompts, width, height, model_option, num_variants)
|
223 |
|
|
|
224 |
st.header("Im谩genes Generadas")
|
225 |
cols = st.columns(4)
|
226 |
for i, (image_path, image_prompt) in enumerate(generated_images):
|