Spaces:
Build error
Build error
salomonsky
commited on
Commit
•
980ffaa
1
Parent(s):
a9f1e60
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,8 @@ import asyncio
|
|
10 |
from concurrent.futures import ThreadPoolExecutor
|
11 |
|
12 |
MAX_SEED = np.iinfo(np.int32).max
|
13 |
-
HF_TOKEN = os.environ.get("
|
|
|
14 |
client = AsyncInferenceClient()
|
15 |
llm_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
16 |
DATA_PATH = Path("./data")
|
@@ -23,9 +24,6 @@ def run_async(func):
|
|
23 |
result = loop.run_in_executor(executor, func)
|
24 |
return loop.run_until_complete(result)
|
25 |
|
26 |
-
def enable_lora(lora_add, basemodel):
|
27 |
-
return lora_add if lora_add else basemodel
|
28 |
-
|
29 |
async def generate_image(combined_prompt, model, width, height, scales, steps, seed):
|
30 |
try:
|
31 |
if seed == -1:
|
@@ -59,10 +57,8 @@ def save_prompt(prompt_text, seed):
|
|
59 |
st.error(f"Error al guardar el prompt: {e}")
|
60 |
return None
|
61 |
|
62 |
-
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale,
|
63 |
-
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
|
64 |
combined_prompt = prompt
|
65 |
-
|
66 |
if process_enhancer:
|
67 |
improved_prompt = await improve_prompt(prompt)
|
68 |
combined_prompt = f"{prompt} {improved_prompt}"
|
@@ -71,7 +67,7 @@ async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_fac
|
|
71 |
seed = random.randint(0, MAX_SEED)
|
72 |
seed = int(seed)
|
73 |
progress_bar = st.progress(0)
|
74 |
-
image, seed = await generate_image(combined_prompt,
|
75 |
progress_bar.progress(50)
|
76 |
|
77 |
if isinstance(image, str) and image.startswith("Error"):
|
@@ -98,11 +94,12 @@ async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_fac
|
|
98 |
|
99 |
async def improve_prompt(prompt):
|
100 |
try:
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
104 |
improved_text = response['generated_text'].strip() if 'generated_text' in response else response.strip()
|
105 |
-
return improved_text[:
|
106 |
except Exception as e:
|
107 |
return f"Error mejorando el prompt: {e}"
|
108 |
|
@@ -137,15 +134,13 @@ def delete_image(image_path):
|
|
137 |
|
138 |
def main():
|
139 |
st.set_page_config(layout="wide")
|
140 |
-
st.title("FLUX
|
141 |
-
|
142 |
-
prompt = st.sidebar.text_input("Descripción de la imagen", max_chars=
|
143 |
-
process_enhancer = st.sidebar.checkbox("Mejorar Prompt", value=
|
144 |
basemodel = st.sidebar.selectbox("Modelo Base", ["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"])
|
145 |
-
lora_model = st.sidebar.selectbox("LORA Realismo", ["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"])
|
146 |
format_option = st.sidebar.selectbox("Formato", ["9:16", "16:9"])
|
147 |
-
|
148 |
-
process_upscale = st.sidebar.checkbox("Procesar Escalador", value=False)
|
149 |
upscale_factor = st.sidebar.selectbox("Factor de Escala", [2, 4, 8], index=0)
|
150 |
scales = st.sidebar.slider("Escalado", 1, 20, 10)
|
151 |
steps = st.sidebar.slider("Pasos", 1, 100, 20)
|
@@ -160,7 +155,7 @@ def main():
|
|
160 |
|
161 |
if st.sidebar.button("Generar Imagen"):
|
162 |
with st.spinner("Mejorando y generando imagen..."):
|
163 |
-
result = asyncio.run(gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale,
|
164 |
image_paths = result[0]
|
165 |
prompt_file = result[1]
|
166 |
|
|
|
10 |
from concurrent.futures import ThreadPoolExecutor
|
11 |
|
12 |
MAX_SEED = np.iinfo(np.int32).max
|
13 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
14 |
+
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
|
15 |
client = AsyncInferenceClient()
|
16 |
llm_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
17 |
DATA_PATH = Path("./data")
|
|
|
24 |
result = loop.run_in_executor(executor, func)
|
25 |
return loop.run_until_complete(result)
|
26 |
|
|
|
|
|
|
|
27 |
async def generate_image(combined_prompt, model, width, height, scales, steps, seed):
|
28 |
try:
|
29 |
if seed == -1:
|
|
|
57 |
st.error(f"Error al guardar el prompt: {e}")
|
58 |
return None
|
59 |
|
60 |
+
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, process_enhancer):
|
|
|
61 |
combined_prompt = prompt
|
|
|
62 |
if process_enhancer:
|
63 |
improved_prompt = await improve_prompt(prompt)
|
64 |
combined_prompt = f"{prompt} {improved_prompt}"
|
|
|
67 |
seed = random.randint(0, MAX_SEED)
|
68 |
seed = int(seed)
|
69 |
progress_bar = st.progress(0)
|
70 |
+
image, seed = await generate_image(combined_prompt, basemodel, width, height, scales, steps, seed)
|
71 |
progress_bar.progress(50)
|
72 |
|
73 |
if isinstance(image, str) and image.startswith("Error"):
|
|
|
94 |
|
95 |
async def improve_prompt(prompt):
|
96 |
try:
|
97 |
+
instruction_en = "With this idea, describe in English a detailed txt2img prompt in 500 characters at most, add illumination, atmosphere, cinematic elements, and characters..."
|
98 |
+
instruction_es = "Con esta idea, describe en español un prompt detallado de txt2img en un máximo de 500 caracteres, añadiendo iluminación, atmósfera, elementos cinematográficos y personajes..."
|
99 |
+
formatted_prompt = f"{prompt}: {instruction_en} {instruction_es}"
|
100 |
+
response = llm_client.text_generation(formatted_prompt, max_new_tokens=300)
|
101 |
improved_text = response['generated_text'].strip() if 'generated_text' in response else response.strip()
|
102 |
+
return improved_text[:300] if len(improved_text) > 300 else improved_text
|
103 |
except Exception as e:
|
104 |
return f"Error mejorando el prompt: {e}"
|
105 |
|
|
|
134 |
|
135 |
def main():
|
136 |
st.set_page_config(layout="wide")
|
137 |
+
st.title("FLUX with prompt enhancer and upscaler")
|
138 |
+
|
139 |
+
prompt = st.sidebar.text_input("Descripción de la imagen", max_chars=200)
|
140 |
+
process_enhancer = st.sidebar.checkbox("Mejorar Prompt", value=True)
|
141 |
basemodel = st.sidebar.selectbox("Modelo Base", ["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"])
|
|
|
142 |
format_option = st.sidebar.selectbox("Formato", ["9:16", "16:9"])
|
143 |
+
process_upscale = st.sidebar.checkbox("Procesar Escalador", value=True)
|
|
|
144 |
upscale_factor = st.sidebar.selectbox("Factor de Escala", [2, 4, 8], index=0)
|
145 |
scales = st.sidebar.slider("Escalado", 1, 20, 10)
|
146 |
steps = st.sidebar.slider("Pasos", 1, 100, 20)
|
|
|
155 |
|
156 |
if st.sidebar.button("Generar Imagen"):
|
157 |
with st.spinner("Mejorando y generando imagen..."):
|
158 |
+
result = asyncio.run(gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, process_enhancer))
|
159 |
image_paths = result[0]
|
160 |
prompt_file = result[1]
|
161 |
|