Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,79 +1,86 @@
|
|
1 |
-
import os
|
2 |
-
import random
|
3 |
from pathlib import Path
|
4 |
-
from PIL import Image
|
5 |
import streamlit as st
|
|
|
|
|
6 |
from huggingface_hub import InferenceClient, AsyncInferenceClient
|
7 |
-
import
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
12 |
client = AsyncInferenceClient()
|
13 |
llm_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
with open(prompt_file, "a") as file:
|
18 |
-
file.write(f"{description}\n")
|
19 |
-
|
20 |
-
def save_image(image, file_name, prompt=None):
|
21 |
-
image_path = TEMP_PATH / file_name
|
22 |
-
if image_path.exists():
|
23 |
-
st.warning(f"La imagen '{file_name}' ya existe en la galer铆a. No se guard贸.")
|
24 |
-
return None
|
25 |
-
image.save(image_path, format="JPEG")
|
26 |
-
if prompt:
|
27 |
-
save_prompt(f"{file_name}: {prompt}")
|
28 |
-
return image_path
|
29 |
|
30 |
-
def
|
31 |
try:
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
img.save(thumbnail_path, format="JPEG")
|
36 |
-
return thumbnail_path
|
37 |
except Exception as e:
|
38 |
-
st.error(f"Error al
|
39 |
return None
|
40 |
|
41 |
-
def
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
async def gen(prompts, width, height, model_name, num_variants=1, use_enhanced=True
|
72 |
images = []
|
73 |
try:
|
74 |
for idx, prompt in enumerate(prompts):
|
75 |
-
|
76 |
-
|
|
|
77 |
if image_path:
|
78 |
st.success(f"Imagen {idx + 1} generada")
|
79 |
images.append(str(image_path))
|
@@ -81,19 +88,87 @@ async def gen(prompts, width, height, model_name, num_variants=1, use_enhanced=T
|
|
81 |
st.error(f"Error al generar im谩genes: {e}")
|
82 |
return images
|
83 |
|
84 |
-
async def generate_image(prompt, width, height, model_name, seed):
|
85 |
-
if seed == -1:
|
86 |
-
seed = random.randint(0, 2147483647)
|
87 |
-
image = await client.text_to_image(prompt=prompt, height=height, width=width, model=model_name, seed=seed)
|
88 |
-
return image, seed
|
89 |
-
|
90 |
def list_saved_images():
|
91 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
def login_form():
|
94 |
st.title("Iniciar Sesi贸n")
|
95 |
username = st.text_input("Usuario", value="admin")
|
96 |
-
password = st.text_input("Contrase帽a", value="flux3x", type="password")
|
97 |
if st.button("Iniciar Sesi贸n"):
|
98 |
if authenticate_user(username, password):
|
99 |
st.success("Autenticaci贸n exitosa.")
|
@@ -101,92 +176,79 @@ def login_form():
|
|
101 |
else:
|
102 |
st.error("Credenciales incorrectas. Intenta de nuevo.")
|
103 |
|
104 |
-
|
105 |
-
prompts = set()
|
106 |
-
while len(prompts) < num_variants:
|
107 |
-
enhanced_prompt = await improve_prompt(f"{prompt}, estilo: {style}") if use_enhanced else f"{prompt}, estilo: {style}"
|
108 |
-
prompts.add(enhanced_prompt)
|
109 |
-
return list(prompts)
|
110 |
-
|
111 |
-
def authenticate_user(username, password):
|
112 |
-
return username == "admin" and password == "flux3x"
|
113 |
-
|
114 |
-
def swap_faces(source_image_path, target_image_path, output_path):
|
115 |
try:
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
source_face_locations = face_recognition.face_locations(source_image)
|
120 |
-
target_face_locations = face_recognition.face_locations(target_image)
|
121 |
-
|
122 |
-
if not source_face_locations or not target_face_locations:
|
123 |
-
raise ValueError("No se detectaron rostros en una de las im谩genes.")
|
124 |
-
|
125 |
-
source_face_encodings = face_recognition.face_encodings(source_image, source_face_locations)
|
126 |
-
target_face_encodings = face_recognition.face_encodings(target_image, target_face_locations)
|
127 |
-
|
128 |
-
# En este ejemplo, solo se realiza un intercambio b谩sico del primer rostro encontrado
|
129 |
-
for target_location, target_encoding in zip(target_face_locations, target_face_encodings):
|
130 |
-
match = face_recognition.compare_faces(source_face_encodings, target_encoding, tolerance=0.6)
|
131 |
-
if any(match):
|
132 |
-
top, right, bottom, left = target_location
|
133 |
-
target_image[top:bottom, left:right] = source_image[top:bottom, left:right]
|
134 |
-
|
135 |
-
swapped_image = Image.fromarray(target_image)
|
136 |
-
swapped_image.save(output_path)
|
137 |
-
return output_path
|
138 |
-
|
139 |
except Exception as e:
|
140 |
-
st.error(f"Error al
|
141 |
return None
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
async def main():
|
|
|
|
|
144 |
if 'authenticated' not in st.session_state or not st.session_state['authenticated']:
|
145 |
login_form()
|
146 |
return
|
147 |
|
|
|
|
|
148 |
prompt = st.sidebar.text_area("Descripci贸n de la imagen", height=150, max_chars=500)
|
149 |
-
format_option = st.sidebar.selectbox("Formato", ["9:16", "16:9"])
|
150 |
-
|
151 |
-
st.sidebar.
|
152 |
-
|
153 |
-
|
154 |
-
st.sidebar.
|
155 |
-
|
156 |
-
seed = -1 if randomize_seed else st.sidebar.number_input("Seed", value=42, min_value=0, max_value=2147483647)
|
157 |
-
prompt_checkbox = st.sidebar.checkbox("Mejorar Prompt", value=True)
|
158 |
-
num_variants = st.sidebar.slider("N煤mero de im谩genes a generar", 1, 8, 1)
|
159 |
-
|
160 |
if prompt_checkbox:
|
161 |
-
|
|
|
162 |
else:
|
163 |
-
prompts = [
|
164 |
|
165 |
-
|
166 |
-
try:
|
167 |
-
results = await gen(prompts, width, height, model_option, num_variants, prompt_checkbox, seed)
|
168 |
-
for result in results:
|
169 |
-
st.image(result, caption="Imagen Generada", use_column_width=True)
|
170 |
-
except Exception as e:
|
171 |
-
st.error(f"Error al generar las im谩genes: {str(e)}")
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
-
|
191 |
-
import asyncio
|
192 |
-
asyncio.run(main())
|
|
|
|
|
|
|
1 |
from pathlib import Path
|
2 |
+
from PIL import Image
|
3 |
import streamlit as st
|
4 |
+
import insightface
|
5 |
+
from insightface.app import FaceAnalysis
|
6 |
from huggingface_hub import InferenceClient, AsyncInferenceClient
|
7 |
+
import asyncio
|
8 |
+
import os
|
9 |
+
import random
|
10 |
+
import numpy as np
|
11 |
+
import yaml
|
12 |
|
13 |
+
try:
|
14 |
+
with open("config.yaml", "r") as file:
|
15 |
+
credentials = yaml.safe_load(file)
|
16 |
+
except Exception as e:
|
17 |
+
st.error(f"Error al cargar el archivo de configuraci贸n: {e}")
|
18 |
+
credentials = {"username": "", "password": ""}
|
19 |
+
|
20 |
+
MAX_SEED = np.iinfo(np.int32).max
|
21 |
client = AsyncInferenceClient()
|
22 |
llm_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
23 |
+
DATA_PATH = Path("./data")
|
24 |
+
DATA_PATH.mkdir(exist_ok=True)
|
25 |
+
PREDEFINED_SEED = random.randint(0, MAX_SEED)
|
26 |
+
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
|
27 |
|
28 |
+
if not HF_TOKEN_UPSCALER:
|
29 |
+
st.warning("HF_TOKEN_UPSCALER no est谩 configurado. Algunas funcionalidades pueden no funcionar.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
32 |
try:
|
33 |
+
upscale_client = InferenceClient("fal/AuraSR-v2", hf_token=HF_TOKEN_UPSCALER)
|
34 |
+
result = upscale_client.predict(input_image=handle_file(img_path), prompt=prompt, upscale_factor=upscale_factor)
|
35 |
+
return result[1] if isinstance(result, list) and len(result) > 1 else None
|
|
|
|
|
36 |
except Exception as e:
|
37 |
+
st.error(f"Error al mejorar la imagen: {e}")
|
38 |
return None
|
39 |
|
40 |
+
def authenticate_user(username, password):
|
41 |
+
return username == credentials["username"] and password == credentials["password"]
|
42 |
+
|
43 |
+
def prepare_face_app():
|
44 |
+
app = FaceAnalysis(name='buffalo_l')
|
45 |
+
app.prepare(ctx_id=0, det_size=(640, 640))
|
46 |
+
swapper = insightface.model_zoo.get_model('onix.onnx')
|
47 |
+
return app, swapper
|
48 |
+
|
49 |
+
app, swapper = prepare_face_app()
|
50 |
+
|
51 |
+
def sort_faces(faces):
|
52 |
+
return sorted(faces, key=lambda x: x.bbox[0])
|
53 |
+
|
54 |
+
def get_face(faces, face_id):
|
55 |
+
if not faces or len(faces) < face_id:
|
56 |
+
raise ValueError("Rostro no disponible.")
|
57 |
+
return faces[face_id - 1]
|
58 |
+
|
59 |
+
def swap_faces(source_image, source_face_index, destination_image, destination_face_index):
|
60 |
+
faces = sort_faces(app.get(source_image))
|
61 |
+
source_face = get_face(faces, source_face_index)
|
62 |
+
|
63 |
+
res_faces = sort_faces(app.get(destination_image))
|
64 |
+
if destination_face_index > len(res_faces) or destination_face_index < 1:
|
65 |
+
raise ValueError("脥ndice de rostro de destino no v谩lido.")
|
66 |
+
|
67 |
+
res_face = get_face(res_faces, destination_face_index)
|
68 |
+
result = swapper.get(destination_image, res_face, source_face, paste_back=True)
|
69 |
+
return result
|
70 |
+
|
71 |
+
async def generate_image(prompt, width, height, seed, model_name):
|
72 |
+
if seed == -1:
|
73 |
+
seed = random.randint(0, MAX_SEED)
|
74 |
+
image = await client.text_to_image(prompt=prompt, height=height, width=width, model=model_name)
|
75 |
+
return image, seed
|
76 |
|
77 |
+
async def gen(prompts, width, height, model_name, num_variants=1, use_enhanced=True):
|
78 |
images = []
|
79 |
try:
|
80 |
for idx, prompt in enumerate(prompts):
|
81 |
+
seed = random.randint(0, MAX_SEED)
|
82 |
+
image, seed = await generate_image(prompt, width, height, seed, model_name)
|
83 |
+
image_path = save_image(image, f"generated_image_{seed}.jpg")
|
84 |
if image_path:
|
85 |
st.success(f"Imagen {idx + 1} generada")
|
86 |
images.append(str(image_path))
|
|
|
88 |
st.error(f"Error al generar im谩genes: {e}")
|
89 |
return images
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
def list_saved_images():
|
92 |
+
return list(DATA_PATH.glob("*.jpg"))
|
93 |
+
|
94 |
+
def display_gallery():
|
95 |
+
st.header("Galer铆a de Im谩genes Guardadas")
|
96 |
+
images = list_saved_images()
|
97 |
+
if images:
|
98 |
+
cols = st.columns(8)
|
99 |
+
for i, image_file in enumerate(images):
|
100 |
+
with cols[i % 8]:
|
101 |
+
st.image(str(image_file), caption=image_file.name, use_column_width=True)
|
102 |
+
prompt = get_prompt_for_image(image_file.name)
|
103 |
+
st.write(prompt[:300])
|
104 |
+
|
105 |
+
if st.button(f"FaceSwap", key=f"select_{i}_{image_file.name}"):
|
106 |
+
st.session_state['generated_image_path'] = str(image_file)
|
107 |
+
st.success("Imagen seleccionada")
|
108 |
+
|
109 |
+
if st.button(f"Borrar", key=f"delete_{i}_{image_file.name}"):
|
110 |
+
if os.path.exists(image_file):
|
111 |
+
os.remove(image_file)
|
112 |
+
st.success("Imagen borrada")
|
113 |
+
display_gallery()
|
114 |
+
else:
|
115 |
+
st.warning("La imagen no existe.")
|
116 |
+
else:
|
117 |
+
st.info("No hay im谩genes guardadas.")
|
118 |
+
|
119 |
+
def save_prompt(prompt):
|
120 |
+
with open(DATA_PATH / "prompts.txt", "a") as f:
|
121 |
+
f.write(prompt + "\n")
|
122 |
+
st.success("Prompt guardado.")
|
123 |
+
|
124 |
+
def run_async(func, *args):
|
125 |
+
return asyncio.run(func(*args))
|
126 |
+
|
127 |
+
async def improve_prompt(prompt):
|
128 |
+
try:
|
129 |
+
instructions = [
|
130 |
+
"With my idea create a vibrant description for a detailed txt2img prompt, 300 characters max.",
|
131 |
+
"With my idea write a creative and detailed text-to-image prompt in English, 300 characters max.",
|
132 |
+
"With my idea generate a descriptive and visual txt2img prompt in English, 300 characters max.",
|
133 |
+
"With my idea describe a photorealistic with illumination txt2img prompt in English, 300 characters max.",
|
134 |
+
"With my idea give a realistic and elegant txt2img prompt in English, 300 characters max.",
|
135 |
+
"With my idea conform a visually dynamic and surreal txt2img prompt in English, 300 characters max.",
|
136 |
+
"With my idea realize an artistic and cinematic txt2img prompt in English, 300 characters max.",
|
137 |
+
"With my idea make a narrative and immersive txt2img prompt in English, 300 characters max."
|
138 |
+
]
|
139 |
+
instruction = random.choice(instructions)
|
140 |
+
formatted_prompt = f"{prompt}: {instruction}"
|
141 |
+
response = llm_client.text_generation(formatted_prompt, max_new_tokens=100)
|
142 |
+
return response['generated_text'][:100] if 'generated_text' in response else response.strip()
|
143 |
+
except Exception as e:
|
144 |
+
return f"Error mejorando el prompt: {e}"
|
145 |
+
|
146 |
+
def generate_variations(prompt, num_variants, use_enhanced):
|
147 |
+
prompts = set()
|
148 |
+
while len(prompts) < num_variants:
|
149 |
+
if use_enhanced:
|
150 |
+
enhanced_prompt = improve_prompt(prompt)
|
151 |
+
prompts.add(enhanced_prompt)
|
152 |
+
else:
|
153 |
+
prompts.add(prompt)
|
154 |
+
return list(prompts)
|
155 |
+
|
156 |
+
def get_prompt_for_image(image_name):
|
157 |
+
prompts = {}
|
158 |
+
try:
|
159 |
+
with open(DATA_PATH / "prompts.txt", "r") as f:
|
160 |
+
for line in f:
|
161 |
+
if line.startswith(image_name):
|
162 |
+
prompts[image_name] = line.split(": ", 1)[1].strip()
|
163 |
+
except FileNotFoundError:
|
164 |
+
return "No hay prompt asociado."
|
165 |
+
|
166 |
+
return prompts.get(image_name, "No hay prompt asociado.")
|
167 |
|
168 |
def login_form():
|
169 |
st.title("Iniciar Sesi贸n")
|
170 |
username = st.text_input("Usuario", value="admin")
|
171 |
+
password = st.text_input("Contrase帽a", value="flux3x", type="password")
|
172 |
if st.button("Iniciar Sesi贸n"):
|
173 |
if authenticate_user(username, password):
|
174 |
st.success("Autenticaci贸n exitosa.")
|
|
|
176 |
else:
|
177 |
st.error("Credenciales incorrectas. Intenta de nuevo.")
|
178 |
|
179 |
+
def save_image(image, filename):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
try:
|
181 |
+
image_path = DATA_PATH / filename
|
182 |
+
image.save(image_path)
|
183 |
+
return image_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
except Exception as e:
|
185 |
+
st.error(f"Error al guardar la imagen: {e}")
|
186 |
return None
|
187 |
|
188 |
+
def upload_image_to_gallery():
|
189 |
+
uploaded_image = st.sidebar.file_uploader("Sube una imagen a la galer铆a", type=["jpg", "jpeg", "png"])
|
190 |
+
if uploaded_image:
|
191 |
+
image = Image.open(uploaded_image)
|
192 |
+
image_path = save_image(image, f"{uploaded_image.name}")
|
193 |
+
if image_path:
|
194 |
+
save_prompt("uploaded by user")
|
195 |
+
st.sidebar.success(f"Imagen subida: {image_path}")
|
196 |
+
|
197 |
async def main():
|
198 |
+
st.set_page_config(layout="wide")
|
199 |
+
|
200 |
if 'authenticated' not in st.session_state or not st.session_state['authenticated']:
|
201 |
login_form()
|
202 |
return
|
203 |
|
204 |
+
st.title("Flux +Upscale +Prompt Enhancer +FaceSwap")
|
205 |
+
generated_image_path = st.session_state.get('generated_image_path')
|
206 |
prompt = st.sidebar.text_area("Descripci贸n de la imagen", height=150, max_chars=500)
|
207 |
+
format_option = st.sidebar.selectbox("Formato", ["9:16", "16:9", "1:1"])
|
208 |
+
model_option = st.sidebar.selectbox("Modelo", ["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-dev"])
|
209 |
+
prompt_checkbox = st.sidebar.checkbox("Mejorar Prompt")
|
210 |
+
upscale_checkbox = st.sidebar.checkbox("Escalar imagen")
|
211 |
+
width, height = (720, 1280) if format_option == "9:16" else (1280, 720) if format_option == "16:9" else (1280, 1280)
|
212 |
+
num_variants = st.sidebar.slider("N煤mero de im谩genes a generar", 1, 8, 1) if prompt_checkbox else 1
|
213 |
+
|
|
|
|
|
|
|
|
|
214 |
if prompt_checkbox:
|
215 |
+
with st.spinner("Generando prompts mejorados..."):
|
216 |
+
prompts = generate_variations(prompt, num_variants, True)
|
217 |
else:
|
218 |
+
prompts = [prompt]
|
219 |
|
220 |
+
upload_image_to_gallery()
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
+
if st.sidebar.button("Generar Im谩genes"):
|
223 |
+
with st.spinner("Generando im谩genes..."):
|
224 |
+
try:
|
225 |
+
results = await gen(prompts, width, height, model_option, num_variants, prompt_checkbox)
|
226 |
+
st.session_state['generated_image_paths'] = results
|
227 |
+
for result in results:
|
228 |
+
st.image(result, caption="Imagen Generada")
|
229 |
+
except Exception as e:
|
230 |
+
st.error(f"Error al generar las im谩genes: {str(e)}")
|
231 |
+
|
232 |
+
if generated_image_path:
|
233 |
+
if upscale_checkbox:
|
234 |
+
with st.spinner("Escalando imagen..."):
|
235 |
+
try:
|
236 |
+
upscale_image_path = get_upscale_finegrain("Upscale", generated_image_path, 2)
|
237 |
+
if upscale_image_path:
|
238 |
+
st.image(upscale_image_path, caption="Imagen Escalada")
|
239 |
+
except Exception as e:
|
240 |
+
st.error(f"Error al escalar la imagen: {str(e)}")
|
241 |
+
|
242 |
+
st.header("Intercambio de Rostros")
|
243 |
+
source_image_file = st.file_uploader("Imagen de Origen", type=["jpg", "jpeg", "png"])
|
244 |
+
|
245 |
+
if source_image_file is not None:
|
246 |
+
try:
|
247 |
+
source_image = Image.open(source_image_file)
|
248 |
+
except Exception as e:
|
249 |
+
st.error(f"Error al cargar la imagen de origen: {str(e)}")
|
250 |
+
source_image = None
|
251 |
+
else:
|
252 |
+
source_image = Image.open("face.jpg")
|
253 |
|
254 |
+
source_face_index
|
|
|
|