Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -76,7 +76,8 @@ class ModelWrapper:
|
|
76 |
@staticmethod
|
77 |
def _get_time():
|
78 |
return time.time()
|
79 |
-
|
|
|
80 |
def sample(self, noise, unet_added_conditions, prompt_embed, fast_vae_decode):
|
81 |
alphas_cumprod = self.scheduler.alphas_cumprod.to(self.device)
|
82 |
|
@@ -123,10 +124,8 @@ class ModelWrapper:
|
|
123 |
|
124 |
add_time_ids = self.build_condition_input(height, width).repeat(num_images, 1)
|
125 |
|
126 |
-
noise = torch.randn(num_images, 4, height // self.vae_downsample_ratio, width // self.vae_downsample_ratio, generator=generator).to(device="cuda",dtype=torch.float16)
|
127 |
|
128 |
-
noise = noise.to(torch.float16)
|
129 |
-
|
130 |
prompt_inputs = self._encode_prompt(prompt)
|
131 |
|
132 |
start_time = self._get_time()
|
@@ -159,7 +158,7 @@ class ModelWrapper:
|
|
159 |
|
160 |
return output_image_list, f"Run successfully in {(end_time-start_time):.2f} seconds"
|
161 |
|
162 |
-
|
163 |
def get_x0_from_noise(sample, model_output, alphas_cumprod, timestep):
|
164 |
alpha_prod_t = alphas_cumprod[timestep].reshape(-1, 1, 1, 1)
|
165 |
beta_prod_t = 1 - alpha_prod_t
|
|
|
76 |
@staticmethod
|
77 |
def _get_time():
|
78 |
return time.time()
|
79 |
+
|
80 |
+
@spaces.GPU()
|
81 |
def sample(self, noise, unet_added_conditions, prompt_embed, fast_vae_decode):
|
82 |
alphas_cumprod = self.scheduler.alphas_cumprod.to(self.device)
|
83 |
|
|
|
124 |
|
125 |
add_time_ids = self.build_condition_input(height, width).repeat(num_images, 1)
|
126 |
|
127 |
+
noise = torch.randn(num_images, 4, height // self.vae_downsample_ratio, width // self.vae_downsample_ratio, generator=generator).to(device="cuda", dtype=torch.float16)
|
128 |
|
|
|
|
|
129 |
prompt_inputs = self._encode_prompt(prompt)
|
130 |
|
131 |
start_time = self._get_time()
|
|
|
158 |
|
159 |
return output_image_list, f"Run successfully in {(end_time-start_time):.2f} seconds"
|
160 |
|
161 |
+
|
162 |
def get_x0_from_noise(sample, model_output, alphas_cumprod, timestep):
|
163 |
alpha_prod_t = alphas_cumprod[timestep].reshape(-1, 1, 1, 1)
|
164 |
beta_prod_t = 1 - alpha_prod_t
|