Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -96,13 +96,13 @@ class ModelWrapper:
|
|
96 |
current_timesteps = torch.ones(len(prompt_embed), device="cuda", dtype=torch.long) * constant
|
97 |
current_timesteps = current_timesteps.to(torch.float16)
|
98 |
print(f'current_timestpes: {current_timesteps.dtype}')
|
99 |
-
eval_images = self.model(noise, current_timesteps, prompt_embed, added_cond_kwargs=unet_added_conditions).sample
|
100 |
print(type(eval_images))
|
101 |
|
102 |
eval_images = get_x0_from_noise(noise, eval_images, alphas_cumprod, current_timesteps).to(self.DTYPE)
|
103 |
|
104 |
next_timestep = current_timesteps - step_interval
|
105 |
-
noise = self.scheduler.add_noise(eval_images, torch.randn_like(eval_images), next_timestep).to(
|
106 |
|
107 |
if fast_vae_decode:
|
108 |
eval_images = self.tiny_vae.decode(eval_images.to(self.tiny_vae_dtype) / self.tiny_vae.config.scaling_factor, return_dict=False)[0]
|
@@ -138,7 +138,7 @@ class ModelWrapper:
|
|
138 |
|
139 |
unet_added_conditions = {
|
140 |
"time_ids": add_time_ids,
|
141 |
-
"text_embeds": batch_pooled_prompt_embeds.squeeze(1)
|
142 |
}
|
143 |
|
144 |
|
|
|
96 |
current_timesteps = torch.ones(len(prompt_embed), device="cuda", dtype=torch.long) * constant
|
97 |
current_timesteps = current_timesteps.to(torch.float16)
|
98 |
print(f'current_timestpes: {current_timesteps.dtype}')
|
99 |
+
eval_images = self.model(noise.to(torch.float16), current_timesteps, prompt_embed.to(torch.float16), added_cond_kwargs=unet_added_conditions).sample
|
100 |
print(type(eval_images))
|
101 |
|
102 |
eval_images = get_x0_from_noise(noise, eval_images, alphas_cumprod, current_timesteps).to(self.DTYPE)
|
103 |
|
104 |
next_timestep = current_timesteps - step_interval
|
105 |
+
noise = self.scheduler.add_noise(eval_images, torch.randn_like(eval_images), next_timestep).to(torch.float16)
|
106 |
|
107 |
if fast_vae_decode:
|
108 |
eval_images = self.tiny_vae.decode(eval_images.to(self.tiny_vae_dtype) / self.tiny_vae.config.scaling_factor, return_dict=False)[0]
|
|
|
138 |
|
139 |
unet_added_conditions = {
|
140 |
"time_ids": add_time_ids,
|
141 |
+
"text_embeds": batch_pooled_prompt_embeds.squeeze(1).to(torch.float16)
|
142 |
}
|
143 |
|
144 |
|