Spaces:
Running
Running
salomonsky
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import os
|
2 |
-
import torch
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
import random
|
@@ -12,20 +11,20 @@ from PIL import Image
|
|
12 |
from gradio_client import Client, handle_file
|
13 |
from huggingface_hub import login
|
14 |
from gradio_imageslider import ImageSlider
|
15 |
-
|
16 |
|
17 |
MAX_SEED = np.iinfo(np.int32).max
|
18 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
19 |
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
|
20 |
|
21 |
-
if not os.path.exists('GFPGANv1.4.pth'):
|
22 |
-
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
27 |
|
28 |
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
|
|
|
29 |
try:
|
30 |
if seed == -1:
|
31 |
seed = random.randint(0, MAX_SEED)
|
@@ -35,27 +34,23 @@ async def generate_image(prompt, model, lora_word, width, height, scales, steps,
|
|
35 |
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
|
36 |
return image, seed
|
37 |
except Exception as e:
|
38 |
-
print(f"Error
|
39 |
return None, None
|
40 |
|
41 |
-
def get_upscale_gfpgan(prompt, img_path):
|
42 |
-
try:
|
43 |
-
img = gfpgan.enhance(img_path)
|
44 |
-
return img
|
45 |
-
except Exception as e:
|
46 |
-
print(f"Error upscale image: {e}")
|
47 |
-
return None
|
48 |
|
49 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
|
|
50 |
try:
|
51 |
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
|
52 |
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
|
53 |
return result[1]
|
54 |
except Exception as e:
|
55 |
-
print(f"Error
|
56 |
return None
|
57 |
|
58 |
-
|
|
|
|
|
59 |
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
|
60 |
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
|
61 |
if image is None:
|
@@ -65,20 +60,23 @@ async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_fac
|
|
65 |
image.save(image_path, format="JPEG")
|
66 |
|
67 |
if process_upscale:
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
upscale_image
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
75 |
else:
|
76 |
return [image_path, image_path]
|
77 |
|
|
|
78 |
css = """
|
79 |
#col-container{ margin: 0 auto; max-width: 1024px;}
|
80 |
"""
|
81 |
|
|
|
82 |
with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
|
83 |
with gr.Column(elem_id="col-container"):
|
84 |
with gr.Row():
|
@@ -91,20 +89,14 @@ with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
|
|
91 |
process_lora = gr.Checkbox(label="Procesar LORA")
|
92 |
process_upscale = gr.Checkbox(label="Procesar Escalador")
|
93 |
upscale_factor = gr.Radio(label="Factor de Escala", choices=[2, 4, 8], value=2)
|
94 |
-
upscale_model = gr.Radio(label="Modelo de Escalado", choices=["GPFGAN", "Finegrain"], value="GPFGAN")
|
95 |
|
96 |
with gr.Accordion(label="Opciones Avanzadas", open=False):
|
97 |
-
width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=
|
98 |
-
height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=
|
99 |
scales = gr.Slider(label="Escalado", minimum=1, maximum=20, step=1, value=10)
|
100 |
steps = gr.Slider(label="Pasos", minimum=1, maximum=100, step=1, value=20)
|
101 |
seed = gr.Number(label="Semilla", value=-1)
|
102 |
-
|
103 |
btn = gr.Button("Generar")
|
104 |
-
btn.click(
|
105 |
-
|
106 |
-
inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora, upscale_model,],
|
107 |
-
outputs=output_res,
|
108 |
-
)
|
109 |
-
|
110 |
-
demo.launch()
|
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import random
|
|
|
11 |
from gradio_client import Client, handle_file
|
12 |
from huggingface_hub import login
|
13 |
from gradio_imageslider import ImageSlider
|
14 |
+
|
15 |
|
16 |
MAX_SEED = np.iinfo(np.int32).max
|
17 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
18 |
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
|
19 |
|
|
|
|
|
20 |
|
21 |
+
def enable_lora(lora_add, basemodel):
|
22 |
+
"""Habilita o deshabilita LoRA seg煤n la opci贸n seleccionada"""
|
23 |
+
return basemodel if not lora_add else lora_add
|
24 |
+
|
25 |
|
26 |
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
|
27 |
+
"""Genera una imagen utilizando el modelo seleccionado"""
|
28 |
try:
|
29 |
if seed == -1:
|
30 |
seed = random.randint(0, MAX_SEED)
|
|
|
34 |
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
|
35 |
return image, seed
|
36 |
except Exception as e:
|
37 |
+
print(f"Error generando imagen: {e}")
|
38 |
return None, None
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
42 |
+
"""Escala una imagen utilizando FineGrain"""
|
43 |
try:
|
44 |
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
|
45 |
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
|
46 |
return result[1]
|
47 |
except Exception as e:
|
48 |
+
print(f"Error escalando imagen: {e}")
|
49 |
return None
|
50 |
|
51 |
+
|
52 |
+
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
|
53 |
+
"""Funci贸n principal que genera y escala la imagen"""
|
54 |
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
|
55 |
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
|
56 |
if image is None:
|
|
|
60 |
image.save(image_path, format="JPEG")
|
61 |
|
62 |
if process_upscale:
|
63 |
+
upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
|
64 |
+
if upscale_image_path is not None:
|
65 |
+
upscale_image = Image.open(upscale_image_path)
|
66 |
+
upscale_image.save("upscale_image.jpg", format="JPEG")
|
67 |
+
return [image_path, "upscale_image.jpg"]
|
68 |
+
else:
|
69 |
+
print("Error: La ruta de la imagen escalada es None")
|
70 |
+
return [image_path, image_path]
|
71 |
else:
|
72 |
return [image_path, image_path]
|
73 |
|
74 |
+
|
75 |
css = """
|
76 |
#col-container{ margin: 0 auto; max-width: 1024px;}
|
77 |
"""
|
78 |
|
79 |
+
|
80 |
with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
|
81 |
with gr.Column(elem_id="col-container"):
|
82 |
with gr.Row():
|
|
|
89 |
process_lora = gr.Checkbox(label="Procesar LORA")
|
90 |
process_upscale = gr.Checkbox(label="Procesar Escalador")
|
91 |
upscale_factor = gr.Radio(label="Factor de Escala", choices=[2, 4, 8], value=2)
|
|
|
92 |
|
93 |
with gr.Accordion(label="Opciones Avanzadas", open=False):
|
94 |
+
width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=1280)
|
95 |
+
height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=768)
|
96 |
scales = gr.Slider(label="Escalado", minimum=1, maximum=20, step=1, value=10)
|
97 |
steps = gr.Slider(label="Pasos", minimum=1, maximum=100, step=1, value=20)
|
98 |
seed = gr.Number(label="Semilla", value=-1)
|
99 |
+
|
100 |
btn = gr.Button("Generar")
|
101 |
+
btn.click(fn=gen, inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], outputs=output_res,)
|
102 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|