import gradio as gr import torch from diffusers import StableAudioPipeline from huggingface_hub import hf_hub_download import spaces from translatepy import Translator import numpy as np import random import soundfile as sf translator = Translator() # Constants model = "stabilityai/stable-audio-open-1.0" # MAX_SEED = np.iinfo(np.int32).max CSS = """ .gradio-container { max-width: 690px !important; } footer { visibility: hidden; } """ JS = """function () { gradioURL = window.location.href if (!gradioURL.endsWith('?__theme=dark')) { window.location.replace(gradioURL + '?__theme=dark'); } }""" # Ensure model and scheduler are initialized in GPU-enabled function if torch.cuda.is_available(): pipe = StableAudioPipeline.from_pretrained( model, low_cpu_mem_usage=True, torch_dtype=torch.float16).to("cuda") # Function @spaces.GPU(duration=120) def generate_image( prompt, negative="low quality", second: float = 10.0): # if seed == -1: # seed = random.randint(0, MAX_SEED) # seed = int(seed) # generator = torch.Generator().manual_seed(seed) prompt = str(translator.translate(prompt, 'English')) print(f'prompt:{prompt}') audio = pipe( prompt, negative_prompt=negative, audio_end_in_s=second, ).audios os.makedirs("outputs", exist_ok=True) base_count = len(glob(os.path.join("outputs", "*.mp4"))) audio_path = os.path.join("outputs", f"{base_count:06d}.wav") sf.write(audio_path, audio[0].T.float().cpu().numpy(), pipe.vae.samping_rate) return audio_path # Gradio Interface with gr.Blocks(theme='soft', css=CSS, title="Stable Audio Open") as iface: with gr.Accordion(""): gr.Markdown(DESCRIPTION) with gr.Row(): output = gr.Audio(label="Podcast", type="filepath", interactive=False, autoplay=True, elem_classes="audio") # Create an output textbox with gr.Row(): prompt = gr.Textbox(label="Prompt", placeholder="1000 BPM percussive sound of water drops") with gr.Row(): negative = gr.Textbox(label="Negative prompt", placeholder="Low quality") second = gr.Slider(5.0, 60.0, value=10.0, label="Second", step=0.1), with gr.Row(): submit_btn = gr.Button("🚀 Send") # Create a submit button clear_btn = gr.ClearButton(output_box, value="🗑️ Clear") # Create a clear button # Set up the event listeners submit_btn.click(main, inputs=[prompt, negative, second], outputs=output) #gr.close_all() iface.queue().launch(show_api=False) # Launch the Gradio interface