Spaces:
Sleeping
Sleeping
File size: 3,890 Bytes
5b1ae10 d18f074 1d6cd7b d18f074 1d6cd7b 14b2aaa 8ae0bf1 9c9643c 5b1ae10 b9f491e 5b1ae10 9c9643c 14b2aaa 9c9643c 14b2aaa 9c9643c 14b2aaa 9c9643c 14b2aaa 9c9643c 14b2aaa 9c9643c 8ae0bf1 14b2aaa 9c9643c 14b2aaa 9c9643c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import gradio as gr
import torch
import os
from glob import glob
from pathlib import Path
from typing import Optional
from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import load_image, export_to_video
from PIL import Image
import uuid
import random
from huggingface_hub import hf_hub_download
import spaces
MAX_64_BIT_INT = 2**63 - 1
DEFAULT_SEED = 42
DEFAULT_OUTPUT_FOLDER = "outputs"
pipe = StableVideoDiffusionPipeline.from_pretrained("vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16")
pipe.to("cpu")
def resize_image(image, output_size=(1024, 576)):
target_aspect = output_size[0] / output_size[1]
image_aspect = image.width / image.height
if image_aspect > target_aspect:
new_height = output_size[1]
new_width = int(new_height * image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
left = (new_width - output_size[0]) / 2
top = 0
right = (new_width + output_size[0]) / 2
bottom = output_size[1]
else:
new_width = output_size[0]
new_height = int(new_width / image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
left = 0
top = (new_height - output_size[1]) / 2
right = output_size[0]
bottom = (new_height + output_size[1]) / 2
cropped_image = resized_image.crop((left, top, right, bottom))
return cropped_image
def generate_video(image, seed, motion_bucket_id, fps_id):
if image.mode == "RGBA":
image = image.convert("RGB")
generator = torch.manual_seed(seed)
frames = pipe(image, decode_chunk_size=3, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
return frames
def export_video(frames, video_path, fps_id):
export_to_video(frames, video_path, fps=fps_id)
@spaces.GPU(duration=120)
def sample(
image,
seed=DEFAULT_SEED,
randomize_seed=True,
motion_bucket_id=127,
fps_id=6,
version="svd_xt",
cond_aug=0.02,
decoding_t=3,
device="cuda",
output_folder=DEFAULT_OUTPUT_FOLDER,
):
if randomize_seed:
seed = random.randint(0, MAX_64_BIT_INT)
generator = torch.manual_seed(seed)
os.makedirs(output_folder, exist_ok=True)
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
frames = generate_video(image, seed, motion_bucket_id, fps_id)
export_video(frames, video_path, fps_id)
torch.manual_seed(seed)
return video_path, frames, seed
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
image = gr.Image(label="Upload your image", type="pil")
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(label="Seed", value=DEFAULT_SEED, randomize=True, minimum=0, maximum=MAX_64_BIT_INT, step=1)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
generate_btn = gr.Button(value="Animate", variant="primary")
with gr.Column():
video = gr.Video(label="Generated video")
gallery = gr.Gallery(label="Generated frames")
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, gallery, seed], api_name="video")
if __name__ == "__main__":
demo.launch(share=True, show_api=False) |