Spaces:
Sleeping
Sleeping
import io | |
import base64 | |
import webrtcvad | |
import threading | |
import numpy as np | |
from gtts import gTTS | |
import streamlit as st | |
import sounddevice as sd | |
import speech_recognition as sr | |
from huggingface_hub import InferenceClient | |
devices = sd.query_devices() | |
print(devices) | |
if "history" not in st.session_state: | |
st.session_state.history = [] | |
if "pre_prompt_sent" not in st.session_state: | |
st.session_state.pre_prompt_sent = False | |
gatherUsageStats = "false" | |
pre_prompt_text = "eres una IA conductual, tus respuestas ser谩n breves." | |
def recognize_speech(audio_data, show_messages=True): | |
recognizer = sr.Recognizer() | |
audio_recording = sr.AudioFile(audio_data) | |
with audio_recording as source: | |
audio = recognizer.record(source) | |
try: | |
audio_text = recognizer.recognize_google(audio, language="es-ES") | |
if show_messages: | |
st.subheader("Texto Reconocido:") | |
st.write(audio_text) | |
st.success("Reconocimiento de voz completado.") | |
except sr.UnknownValueError: | |
st.warning("No se pudo reconocer el audio. 驴Intentaste grabar algo?") | |
audio_text = "" | |
except sr.RequestError: | |
st.error("Hablame para comenzar!") | |
audio_text = "" | |
return audio_text | |
def format_prompt(message, history): | |
prompt = "<s>" | |
if not st.session_state.pre_prompt_sent: | |
prompt += f"[INST]{pre_prompt_text}[/INST]" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def generate(audio_text, history, temperature=None, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0): | |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
temperature = float(temperature) if temperature is not None else 0.9 | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42,) | |
formatted_prompt = format_prompt(audio_text, history) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True) | |
response = "" | |
for response_token in stream: | |
response += response_token.token.text | |
response = ' '.join(response.split()).replace('</s>', '') | |
audio_file = text_to_speech(response, speed=1.3) | |
return response, audio_file | |
def text_to_speech(text, speed=1.3): | |
tts = gTTS(text=text, lang='es') | |
audio_fp = io.BytesIO() | |
tts.write_to_fp(audio_fp) | |
audio_fp.seek(0) | |
return audio_fp | |
def audio_play(audio_fp): | |
st.audio(audio_fp.read(), format="audio/mp3", start_time=0) | |
def display_recognition_result(audio_text, output, audio_file): | |
if audio_text: | |
st.session_state.history.append((audio_text, output)) | |
if audio_file is not None: | |
st.markdown( | |
f"""<audio autoplay="autoplay" controls="controls" src="data:audio/mp3;base64,{base64.b64encode(audio_file.read()).decode()}" type="audio/mp3" id="audio_player"></audio>""", | |
unsafe_allow_html=True) | |
def voice_activity_detection(audio_data): | |
return vad.is_speech(audio_data, sample_rate) | |
def audio_callback(indata, frames, time, status): | |
assert frames == block_size | |
audio_data = indata[::downsample, mapping] | |
audio_data = map(lambda x: (x + 1) / 2, audio_data) | |
audio_data = np.fromiter(audio_data, np.float16) | |
audio_data = audio_data.tobytes() | |
detection = voice_activity_detection(audio_data) | |
print(detection) | |
def start_stream(): | |
stream.start() | |
class Threader(threading.Thread): | |
def __init__(self, *args, **kwargs): | |
threading.Thread.__init__(self, *args, **kwargs) | |
self.start() | |
def run(self): | |
if self.name == 'mythread': | |
print("Started mythread") | |
start_stream() | |
if __name__ == "__main__": | |
vad = webrtcvad.Vad(1) | |
channels = [1] | |
mapping = [c - 1 for c in channels] | |
device_info = sd.query_devices(16, 'input') | |
sample_rate = int(device_info['default_samplerate']) | |
interval_size = 10 | |
downsample = 1 | |
block_size = int(sample_rate * interval_size / 1000) | |
Threader(name='mythread') | |
st.button("Detener Stream") | |
st.text("Esperando entrada de voz...") | |
st.text("Puedes detener el stream manualmente usando el bot贸n 'Detener Stream'.") | |
st.text("Nota: El c贸digo actual imprime los resultados de VAD en la consola.") | |
st.text("Puedes personalizar la l贸gica de VAD seg煤n tus necesidades.") | |
st.text("La transcripci贸n de voz y la generaci贸n de texto se manejar谩n una vez que se detecte actividad de voz.") | |
st.text("Inicia la grabaci贸n y espera a que aparezcan los resultados.") |