Spaces:
Sleeping
Sleeping
import io | |
import base64 | |
from gtts import gTTS | |
import streamlit as st | |
import speech_recognition as sr | |
from huggingface_hub import InferenceClient | |
from streamlit_mic_recorder import mic_recorder | |
import wave | |
pre_prompt_text = "eres una IA conductual, tus respuestas serán breves." | |
temp_audio_file_path = "./output.wav" | |
if "history" not in st.session_state: | |
st.session_state.history = [] | |
if "pre_prompt_sent" not in st.session_state: | |
st.session_state.pre_prompt_sent = False | |
def recognize_speech(audio_bytes, show_messages=True): | |
recognizer = sr.Recognizer() | |
with io.BytesIO(audio_bytes) as audio_file: | |
try: | |
audio_text = recognizer.recognize_google(audio_file, language="es-ES") | |
if show_messages: | |
st.subheader("Texto Reconocido:") | |
st.write(audio_text) | |
st.success("Reconocimiento de voz completado.") | |
except sr.UnknownValueError: | |
st.warning("No se pudo reconocer el audio. ¿Intentaste grabar algo?") | |
audio_text = "" | |
except sr.RequestError: | |
st.error("Háblame para comenzar!") | |
audio_text = "" | |
return audio_text | |
def format_prompt(message, history): | |
prompt = "<s>" | |
if not st.session_state.pre_prompt_sent: | |
prompt += f"[INST]{pre_prompt_text}[/INST]" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST] {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def generate(audio_text, history, temperature=0.9, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0): | |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
formatted_prompt = format_prompt(audio_text, history) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True) | |
response = " ".join([response_token.token.text for response_token in stream]).replace('</s>', '') | |
audio_file = text_to_speech(response, speed=1.3) | |
return response, audio_file | |
def text_to_speech(text, speed=1.3): | |
tts = gTTS(text=text, lang='es') | |
audio_fp = io.BytesIO() | |
tts.write_to_fp(audio_fp) | |
audio_fp.seek(0) | |
return audio_fp | |
def display_recognition_result(audio_text, output, audio_file): | |
if audio_text: | |
st.session_state.history.append((audio_text, output)) | |
if audio_file is not None: | |
st.markdown( | |
f"""<audio autoplay="autoplay" controls="controls" src="data:audio/mp3;base64,{base64.b64encode(audio_file.read()).decode()}" type="audio/mp3" id="audio_player"></audio>""", | |
unsafe_allow_html=True) | |
def main(): | |
if not st.session_state.pre_prompt_sent: | |
st.session_state.pre_prompt_sent = True | |
audio_data = mic_recorder(start_prompt="▶️", stop_prompt="🛑", key='recorder') | |
if audio_data and 'bytes' in audio_data: | |
st.audio(audio_data['bytes']) | |
audio_bytes = audio_data['bytes'] | |
with wave.open(temp_audio_file_path, 'w') as wave_file: | |
wave_file.setnchannels(1) | |
wave_file.setsampwidth(2) | |
wave_file.setframerate(44100) | |
wave_file.writeframes(audio_bytes) | |
audio_text = recognize_speech(audio_bytes) | |
formatted_prompt = format_prompt(audio_text, st.session_state.history) | |
response, audio_file = generate(formatted_prompt, st.session_state.history) | |
display_recognition_result(audio_text, response, audio_file) | |
if __name__ == "__main__": | |
main() |