import io
import base64
import numpy as np
import soundfile as sf
from gtts import gTTS
import streamlit as st
import speech_recognition as sr
from huggingface_hub import InferenceClient
from streamlit_mic_recorder import mic_recorder
if "history" not in st.session_state:
st.session_state.history = []
if "pre_prompt_sent" not in st.session_state:
st.session_state.pre_prompt_sent = False
pre_prompt_text = "eres una IA conductual, tus respuestas serán breves."
def recognize_speech(audio_data, sample_rate, show_messages=True):
recognizer = sr.Recognizer()
try:
adjusted_audio_data = sf.resample(audio_data, sample_rate, 16000, subtype='PCM_16')
audio_text = recognizer.recognize_google(adjusted_audio_data, language="es-ES")
if show_messages:
st.subheader("Texto Reconocido:")
st.write(audio_text)
st.success("Reconocimiento de voz completado.")
except sr.UnknownValueError:
st.warning("No se pudo reconocer el audio. ¿Intentaste grabar algo?")
audio_text = ""
except sr.RequestError:
st.error("Hablame para comenzar!")
audio_text = ""
return audio_text
def format_prompt(message, history):
prompt = ""
if not st.session_state.pre_prompt_sent:
prompt += f"[INST]{pre_prompt_text}[/INST]"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response} "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(audio_text, history, temperature=None, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0):
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
temperature = float(temperature) if temperature is not None else 0.9
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,)
formatted_prompt = format_prompt(audio_text, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
response = ""
for response_token in stream:
response += response_token.token.text
response = ' '.join(response.split()).replace('', '')
audio_file = text_to_speech(response, speed=1.3)
return response, audio_file
def text_to_speech(text, speed=1.3):
tts = gTTS(text=text, lang='es')
audio_fp = io.BytesIO()
tts.write_to_fp(audio_fp)
audio_fp.seek(0)
return audio_fp
def audio_play(audio_fp):
st.audio(audio_fp.read(), format="audio/mp3", start_time=0)
def display_recognition_result(audio_text, output, audio_file):
if audio_text:
st.session_state.history.append((audio_text, output))
if audio_file is not None:
st.markdown(
f"""""",
unsafe_allow_html=True)
def main():
if not st.session_state.pre_prompt_sent:
st.session_state.pre_prompt_sent = True
audio = mic_recorder(start_prompt="▶️", stop_prompt="🛑", key='recorder')
if audio:
st.audio(audio['bytes'], format="audio/wav")
audio_bytes = np.frombuffer(audio["bytes"], dtype=np.int16)
sample_rate = audio["sample_rate"]
audio_text = recognize_speech(audio_bytes, sample_rate)
if audio_text:
st.session_state.history.append((audio_text, ""))
if __name__ == "__main__":
main()