import io import base64 from gtts import gTTS import streamlit as st import speech_recognition as sr from huggingface_hub import InferenceClient from streamlit_mic_recorder import mic_recorder import wave pre_prompt_text = "eres una IA conductual, tus respuestas serán breves." temp_audio_file_path = "./output.wav" if "history" not in st.session_state: st.session_state.history = [] if "pre_prompt_sent" not in st.session_state: st.session_state.pre_prompt_sent = False def recognize_speech(audio_bytes, show_messages=True): recognizer = sr.Recognizer() with io.BytesIO(audio_bytes) as audio_file: try: audio_text = recognizer.recognize_google(audio_file, language="es-ES") if show_messages: st.subheader("Texto Reconocido:") st.write(audio_text) st.success("Reconocimiento de voz completado.") except sr.UnknownValueError: st.warning("No se pudo reconocer el audio. ¿Intentaste grabar algo?") audio_text = "" except sr.RequestError: st.error("Háblame para comenzar!") audio_text = "" return audio_text def format_prompt(message, history): prompt = "" if not st.session_state.pre_prompt_sent: prompt += f"[INST]{pre_prompt_text}[/INST]" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST] {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate(audio_text, history, temperature=0.9, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0): client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(audio_text, history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True) response = " ".join([response_token.token.text for response_token in stream]).replace('', '') audio_file = text_to_speech(response, speed=1.3) return response, audio_file def text_to_speech(text, speed=1.3): tts = gTTS(text=text, lang='es') audio_fp = io.BytesIO() tts.write_to_fp(audio_fp) audio_fp.seek(0) return audio_fp def display_recognition_result(audio_text, output, audio_file): if audio_text: st.session_state.history.append((audio_text, output)) if audio_file is not None: st.markdown( f"""""", unsafe_allow_html=True) def main(): if not st.session_state.pre_prompt_sent: st.session_state.pre_prompt_sent = True audio_data = mic_recorder(start_prompt="▶️", stop_prompt="🛑", key='recorder') if audio_data and 'bytes' in audio_data: st.audio(audio_data['bytes']) audio_bytes = audio_data['bytes'] with wave.open(temp_audio_file_path, 'w') as wave_file: wave_file.setnchannels(1) wave_file.setsampwidth(2) wave_file.setframerate(44100) wave_file.writeframes(audio_bytes) audio_text = recognize_speech(audio_bytes) formatted_prompt = format_prompt(audio_text, st.session_state.history) response, audio_file = generate(formatted_prompt, st.session_state.history) display_recognition_result(audio_text, response, audio_file) if __name__ == "__main__": main()