import streamlit as st
import base64
import io
from huggingface_hub import InferenceClient
from gtts import gTTS
from streamlit_mic_recorder import mic_recorder
import speech_recognition as sr
from pydub import AudioSegment
pre_prompt_text = "Hablarás español, tus principios el estoicismo, eres una IA conductual, tus respuestas serán breves."
if "history" not in st.session_state:
st.session_state.history = []
if "pre_prompt_sent" not in st.session_state:
st.session_state.pre_prompt_sent = False
def recognize_speech(audio_data, show_messages=True):
recognizer = sr.Recognizer()
audio_recording = sr.AudioFile(audio_data)
with audio_recording as source:
audio = recognizer.record(source)
try:
audio_text = recognizer.recognize_google(audio, language="es-ES")
if show_messages:
st.subheader("Texto Reconocido:")
st.write(audio_text)
st.success("Reconocimiento de voz completado.")
except sr.UnknownValueError:
st.warning("No se pudo reconocer el audio. ¿Intentaste grabar algo?")
audio_text = ""
except sr.RequestError:
st.error("Háblame para comenzar!")
audio_text = ""
return audio_text
def format_prompt(message, history):
prompt = ""
if not st.session_state.pre_prompt_sent:
prompt += f"[INST] {pre_prompt_text} [/INST]"
st.session_state.pre_prompt_sent = True
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response} "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(audio_text, history, temperature=None, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
temperature = float(temperature) if temperature is not None else 0.9
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(audio_text, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
response = ""
for response_token in stream:
response += response_token.token.text
response = ' '.join(response.split()).replace('', '')
audio_file = text_to_speech(response, speed=1.3)
return response, audio_file
def text_to_speech(text, speed=1.3):
tts = gTTS(text=text, lang='es')
audio_fp = io.BytesIO()
tts.write_to_fp(audio_fp)
audio_fp.seek(0)
audio = AudioSegment.from_file(audio_fp, format="mp3")
modified_speed_audio = audio.speedup(playback_speed=speed)
modified_audio_fp = io.BytesIO()
modified_speed_audio.export(modified_audio_fp, format="mp3")
modified_audio_fp.seek(0)
return modified_audio_fp
def audio_play(audio_fp):
st.audio(audio_fp.read(), format="audio/mp3", start_time=0)
def display_recognition_result(audio_text, output, audio_file):
if audio_text:
st.session_state.history.append((audio_text, output))
if audio_file is not None:
st.markdown(
f"""""",
unsafe_allow_html=True)
def main():
if not st.session_state.pre_prompt_sent:
st.session_state.pre_prompt_sent = True
audio_data = mic_recorder(start_prompt="Hablar ▶️", stop_prompt="Detener 🛑", key='recorder')
if audio_data and 'bytes' in audio_data:
audio_bytes = audio_data['bytes']
st.audio(audio_bytes, format="audio/wav")
audio_data_io = io.BytesIO(audio_bytes)
audio_data_io.seek(0)
audio_text = recognize_speech(audio_data_io)
if audio_text:
output, audio_file = generate(audio_text, history=st.session_state.history)
display_recognition_result(audio_text, output, audio_file)
if __name__ == "__main__":
main()