from ctransformers import AutoModelForCausalLM import gradio as gr greety = """ A special thanks to [TheBloke](https://huggingface.co/TheBloke) for the quantized model and [Gathnex](https://medium.com/@gathnex) for his excellent tutorial. """ #Model loading llm = AutoModelForCausalLM.from_pretrained("dolphin-2.0-mistral-7b.Q4_K_S.gguf", model_type='mistral', max_new_tokens = 1096, threads = 3, ) def stream(prompt,UL): system_prompt = 'You are a hlepful AI assistant. Below is an instruction that describes a task. Write a response that appropriately completes the request.' start,end = "<|im_start|>", "<|im_end|>" prompt = f"<|im_start|>system\n{system_prompt}{end}\n{start}user\n{prompt.strip()}{end}\n" return llm(prompt) css = """ h1{ text-align: center; } #duplicate-button{ margin: auto; color: whitesmoke; background: #1565c0; } .contain{ max-width: 900px; margin: auto; padding-top: 1.5rem; } """ chat_interface = gr.ChatInterface( fn = stream, stop_btn='None', examples = [ "what are 'Large Language Models'?", "Explain OCEAN personality types" ], ) with gr.Blocks(css=css) as demo: gr.HTML("