subir001in commited on
Commit
93820a0
1 Parent(s): 66494ca

updated the app.py file

Browse files
Files changed (2) hide show
  1. app.py +85 -4
  2. app1.py +7 -0
app.py CHANGED
@@ -1,7 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- iface.launch()
 
1
+ # -*- coding: utf-8 -*-
2
+ """app.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1F6tnDcfVlChPXwu4UwSHq-bggJlcmyj-
8
+
9
+ # This notebook makes predictions based on saved model.
10
+
11
+ #Import Libraries
12
+ """
13
+ #|default_exp app
14
+
15
+
16
+ #|export
17
+ !pip install -Uqq fastai
18
+ !pip install -Uqq fastbook
19
+ !pip install -Uqq gradio
20
+ !pip install -Uqq nbdev
21
+
22
+ """#Dogs Vs Cats"""
23
+
24
+ #|export
25
+ from fastai.vision.all import *
26
  import gradio as gr
27
 
28
+ #|export
29
+ def is_cat(x): return x[0].isupper()
30
+
31
+ '''
32
+ im = PILImage.create('/content/dog.JPG')
33
+ im.thumbnail((192,192))
34
+ im
35
+ '''
36
+ #|export
37
+ #Use the model.pkl file that is the classifier model
38
+ learn = load_learner('/content/model.pkl')
39
+
40
+ # Commented out IPython magic to ensure Python compatibility.
41
+ #Now predicted the image to determine if it is a Cat ? It correctly predicts that it is NOT a Cat.
42
+ #learn.predict(im)
43
+
44
+ # %time learn.predict(im)
45
+
46
+ """#Now create a GRADIO Interface that has this information
47
+
48
+ Gradio requires us to give it a function that it is going to call. Our's function is `classify_image(img)`
49
+
50
+ learn.predict(img) returns 3 things :
51
+ pred --> Prediction as a String
52
+ idx --> Its index
53
+ probs --> Probability that the image is a Cat ?
54
+
55
+ Gradio wants to get back a dictionary containing each of the posible categories -- which is this case is a DOg or a Cat -- and the probability of each one..
56
+
57
+ """
58
+
59
+ #|export
60
+ categories = ('Dog','Cat')
61
+
62
+ def classify_image(img):
63
+ pred,idx,probs = learn.predict(img)
64
+ return dict(zip(categories,map(float,probs)))
65
+
66
+ #classify_image(im)
67
+
68
+ """#Now creating our GRADIO Interface"""
69
+
70
+ #|export
71
+ image = gr.Image(height=192,width=192)
72
+ label = "label"
73
+ examples = ['/content/dog.JPG','/content/cat.JPG','/content/dunno.JPG']
74
+ intf = gr.Interface(fn = classify_image,inputs=image,outputs=label,examples=examples)
75
+ intf.launch(inline=False)
76
+
77
+ """#Export the notebook as Python script"""
78
+ '''
79
+ !pip install -Uqq nbdev
80
+
81
+ #from nbdev.export import notebook2script
82
+
83
+ from nbdev import nbdev_export
84
+
85
+ !pip install -Uqq nbconvert
86
 
87
+ !jupyter nbconvert app.ipynb --to python
88
+ '''
app1.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ def greet(name):
4
+ return "Hello " + name + "!!"
5
+
6
+ iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
+ iface.launch()