File size: 11,966 Bytes
a6c26b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ab5b15
a6c26b1
 
 
 
 
 
 
 
5ab5b15
a6c26b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9bf317
a6c26b1
 
 
 
 
 
 
 
 
a9bf317
a6c26b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9bf317
5ab5b15
 
 
 
 
 
 
 
a9bf317
a6c26b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import os
import shutil
import sys
from typing import Any, Dict, List, Optional

import torch
import yaml
from dotenv import load_dotenv
from langchain.chains.base import Chain
from langchain.docstore.document import Document
from langchain.prompts import BasePromptTemplate, load_prompt
from langchain_core.callbacks import CallbackManagerForChainRun
from langchain_core.language_models import BaseLanguageModel
from langchain_core.output_parsers import StrOutputParser
from langchain_core.retrievers import BaseRetriever
from transformers import AutoModelForSequenceClassification, AutoTokenizer

current_dir = os.path.dirname(os.path.abspath(__file__)) # src/ directory
kit_dir = os.path.abspath(os.path.join(current_dir, '..')) # EKR/ directory 
repo_dir = os.path.abspath(os.path.join(kit_dir, '..'))
sys.path.append(kit_dir)
sys.path.append(repo_dir)

#import streamlit as st

from utils.model_wrappers.api_gateway import APIGateway
from utils.vectordb.vector_db import VectorDb
from utils.visual.env_utils import get_wandb_key

CONFIG_PATH = os.path.join(kit_dir, 'config.yaml')
PERSIST_DIRECTORY = os.path.join(kit_dir, 'data/my-vector-db')

#load_dotenv(os.path.join(kit_dir, '.env'))


from utils.parsing.sambaparse import parse_doc_universal

# Handle the WANDB_API_KEY resolution before importing weave
#wandb_api_key = get_wandb_key()

# If WANDB_API_KEY is set, proceed with weave initialization
#if wandb_api_key:
#    import weave

    # Initialize Weave with your project name
#    weave.init('sambanova_ekr')
#else:
#    print('WANDB_API_KEY is not set. Weave initialization skipped.')


class RetrievalQAChain(Chain):
    """class for question-answering."""

    retriever: BaseRetriever
    rerank: bool = True
    llm: BaseLanguageModel
    qa_prompt: BasePromptTemplate
    final_k_retrieved_documents: int = 3

    @property
    def input_keys(self) -> List[str]:
        """Input keys.
        :meta private:
        """
        return ['question']

    @property
    def output_keys(self) -> List[str]:
        """Output keys.
        :meta private:
        """
        return ['answer', 'source_documents']

    def _format_docs(self, docs):
        return '\n\n'.join(doc.page_content for doc in docs)

    def rerank_docs(self, query, docs, final_k):
        # Lazy hardcoding for now
        tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large')
        reranker = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large')
        pairs = []
        for d in docs:
            pairs.append([query, d.page_content])

        with torch.no_grad():
            inputs = tokenizer(
                pairs,
                padding=True,
                truncation=True,
                return_tensors='pt',
                max_length=512,
            )
            scores = (
                reranker(**inputs, return_dict=True)
                .logits.view(
                    -1,
                )
                .float()
            )

        scores_list = scores.tolist()
        scores_sorted_idx = sorted(range(len(scores_list)), key=lambda k: scores_list[k], reverse=True)

        docs_sorted = [docs[k] for k in scores_sorted_idx]
        # docs_sorted = [docs[k] for k in scores_sorted_idx if scores_list[k]>0]
        docs_sorted = docs_sorted[:final_k]

        return docs_sorted

    def _call(
        self,
        inputs: Dict[str, Any],
        run_manager: Optional[CallbackManagerForChainRun] = None,
    ) -> Dict[str, Any]:
        qa_chain = self.qa_prompt | self.llm | StrOutputParser()
        response = {}
        documents = self.retriever.invoke(inputs['question'])
        if self.rerank:
            documents = self.rerank_docs(inputs['question'], documents, self.final_k_retrieved_documents)
        docs = self._format_docs(documents)
        response['answer'] = qa_chain.invoke({'question': inputs['question'], 'context': docs})
        response['source_documents'] = documents
        return response


class DocumentRetrieval:
    def __init__(self, sambanova_api_key):
        self.vectordb = VectorDb()
        config_info = self.get_config_info()
        self.api_info = config_info[0]
        self.llm_info = config_info[1]
        self.embedding_model_info = config_info[2]
        self.retrieval_info = config_info[3]
        self.prompts = config_info[4]
        self.prod_mode = config_info[5]
        self.retriever = None
        self.llm = self.set_llm(sambanova_api_key)

    def get_config_info(self):
        """
        Loads json config file
        """
        # Read config file
        with open(CONFIG_PATH, 'r') as yaml_file:
            config = yaml.safe_load(yaml_file)
        api_info = config['api']
        llm_info = config['llm']
        embedding_model_info = config['embedding_model']
        retrieval_info = config['retrieval']
        prompts = config['prompts']
        prod_mode = config['prod_mode']

        return api_info, llm_info, embedding_model_info, retrieval_info, prompts, prod_mode

    def set_llm(self, sambanova_api_key):
        #if self.prod_mode:
        #    sambanova_api_key = st.session_state.SAMBANOVA_API_KEY
        #else:
        #    if 'SAMBANOVA_API_KEY' in st.session_state:
        #        sambanova_api_key = os.environ.get('SAMBANOVA_API_KEY') or st.session_state.SAMBANOVA_API_KEY
        #    else:
        #        sambanova_api_key = os.environ.get('SAMBANOVA_API_KEY')
        
        #sambanova_api_key = os.environ.get('SAMBANOVA_API_KEY')

        llm = APIGateway.load_llm(
            type=self.api_info,
            streaming=True,
            coe=self.llm_info['coe'],
            do_sample=self.llm_info['do_sample'],
            max_tokens_to_generate=self.llm_info['max_tokens_to_generate'],
            temperature=self.llm_info['temperature'],
            select_expert=self.llm_info['select_expert'],
            process_prompt=False,
            sambanova_api_key=sambanova_api_key,
        )
        return llm

    def parse_doc(self, docs: List, additional_metadata: Optional[Dict] = None) -> List[Document]:
        """
        Parse the uploaded documents and return a list of LangChain documents.

        Args:
            docs (List[UploadFile]): A list of uploaded files.
            additional_metadata (Optional[Dict], optional): Additional metadata to include in the processed documents.
                Defaults to an empty dictionary.

        Returns:
            List[Document]: A list of LangChain documents.
        """
        if additional_metadata is None:
            additional_metadata = {}

        # Create the data/tmp folder if it doesn't exist
        temp_folder = os.path.join(kit_dir, 'data/tmp')
        if not os.path.exists(temp_folder):
            os.makedirs(temp_folder)
        else:
            # If there are already files there, delete them
            for filename in os.listdir(temp_folder):
                file_path = os.path.join(temp_folder, filename)
                try:
                    if os.path.isfile(file_path) or os.path.islink(file_path):
                        os.unlink(file_path)
                    elif os.path.isdir(file_path):
                        shutil.rmtree(file_path)
                except Exception as e:
                    print(f'Failed to delete {file_path}. Reason: {e}')

        # Save all selected files to the tmp dir with their file names
        #for doc in docs:
        #    temp_file = os.path.join(temp_folder, doc.name)
        #    with open(temp_file, 'wb') as f:
        #        f.write(doc.getvalue())

        for doc_info in docs:
            file_name, file_obj = doc_info
            temp_file = os.path.join(temp_folder, file_name)
            with open(temp_file, 'wb') as f:
                f.write(file_obj.read())

        # Pass in the temp folder for processing into the parse_doc_universal function
        _, _, langchain_docs = parse_doc_universal(doc=temp_folder, additional_metadata=additional_metadata)
        return langchain_docs

    def load_embedding_model(self):
        embeddings = APIGateway.load_embedding_model(
            type=self.embedding_model_info['type'],
            batch_size=self.embedding_model_info['batch_size'],
            coe=self.embedding_model_info['coe'],
            select_expert=self.embedding_model_info['select_expert'],
        )
        return embeddings

    def create_vector_store(self, text_chunks, embeddings, output_db=None, collection_name=None):
        print(f'Collection name is {collection_name}')
        vectorstore = self.vectordb.create_vector_store(
            text_chunks, embeddings, output_db=output_db, collection_name=collection_name, db_type='chroma'
        )
        return vectorstore

    def load_vdb(self, db_path, embeddings, collection_name=None):
        print(f'Loading collection name is {collection_name}')
        vectorstore = self.vectordb.load_vdb(db_path, embeddings, db_type='chroma', collection_name=collection_name)
        return vectorstore

    def init_retriever(self, vectorstore):
        if self.retrieval_info['rerank']:
            self.retriever = vectorstore.as_retriever(
                search_type='similarity_score_threshold',
                search_kwargs={
                    'score_threshold': self.retrieval_info['score_threshold'],
                    'k': self.retrieval_info['k_retrieved_documents'],
                },
            )
        else:
            self.retriever = vectorstore.as_retriever(
                search_type='similarity_score_threshold',
                search_kwargs={
                    'score_threshold': self.retrieval_info['score_threshold'],
                    'k': self.retrieval_info['final_k_retrieved_documents'],
                },
            )

    def get_qa_retrieval_chain(self):
        """
        Generate a qa_retrieval chain using a language model.

        This function uses a language model, specifically a SambaNova LLM, to generate a qa_retrieval chain
        based on the input vector store of text chunks.

        Parameters:
        vectorstore (Chroma): A Vector Store containing embeddings of text chunks used as context
                            for generating the conversation chain.

        Returns:
        RetrievalQA: A chain ready for QA without memory
        """
        # customprompt = load_prompt(os.path.join(kit_dir, self.prompts["qa_prompt"]))
        # qa_chain = customprompt | self.llm | StrOutputParser()

        # response = {}
        # documents = self.retriever.invoke(question)
        # if self.retrieval_info["rerank"]:
        #     documents = self.rerank_docs(question, documents, self.retrieval_info["final_k_retrieved_documents"])
        # docs = self._format_docs(documents)

        # response["answer"] = qa_chain.invoke({"question": question, "context": docs})
        # response["source_documents"] = documents

        retrievalQAChain = RetrievalQAChain(
            retriever=self.retriever,
            llm=self.llm,
            qa_prompt=load_prompt(os.path.join(kit_dir, self.prompts['qa_prompt'])),
            rerank=self.retrieval_info['rerank'],
            final_k_retrieved_documents=self.retrieval_info['final_k_retrieved_documents'],
        )
        return retrievalQAChain

    def get_conversational_qa_retrieval_chain(self):
        """
        Generate a conversational retrieval qa chain using a language model.

        This function uses a language model, specifically a SambaNova LLM, to generate a conversational_qa_retrieval chain
        based on the chat history and the relevant retrieved content from the input vector store of text chunks.

        Parameters:
        vectorstore (Chroma): A Vector Store containing embeddings of text chunks used as context
                                        for generating the conversation chain.

        Returns:
        RetrievalQA: A chain ready for QA with memory
        """