Spaces:
Runtime error
Runtime error
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
def load_model_and_tokenizer(model_name: str): | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
return model, tokenizer | |
def generate_summary(prompt: str, model, tokenizer) -> str: | |
context_prompt = f"Provide a brief, informative article addressing the following mental health concern: {prompt}" | |
try: | |
inputs = tokenizer(context_prompt, return_tensors="pt", truncation=True, padding=True) | |
summary_ids = model.generate(inputs["input_ids"], max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True) | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
return summary | |
except Exception as e: | |
return str(e) | |