from sklearn.linear_model import LogisticRegression from sklearn.feature_extraction.text import TfidfVectorizer def train_classifier(dummy_data): vectorizer = TfidfVectorizer() train_texts, train_labels = zip(*dummy_data) train_vectors = vectorizer.fit_transform(train_texts) classifier = LogisticRegression() classifier.fit(train_vectors, train_labels) return classifier, vectorizer def classify_text(text: str, classifier, vectorizer) -> str: try: transformed_data = vectorizer.transform([text]) category = classifier.predict(transformed_data)[0] return category except Exception as e: return str(e)