Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,59 +6,112 @@ from google.oauth2 import service_account
|
|
6 |
from googleapiclient.discovery import build
|
7 |
from streamlit_chat import message as st_message
|
8 |
import plotly.express as px
|
|
|
|
|
|
|
9 |
from langchain.schema import HumanMessage, SystemMessage, AIMessage
|
10 |
from langchain.chat_models import ChatOpenAI
|
11 |
from langchain.memory import ConversationBufferWindowMemory
|
12 |
from langchain.prompts import PromptTemplate
|
13 |
-
import
|
14 |
-
import
|
|
|
15 |
from langchain_groq import ChatGroq
|
16 |
import numpy as np
|
17 |
from dotenv import load_dotenv
|
18 |
-
import re
|
19 |
|
20 |
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
21 |
|
22 |
-
#
|
23 |
load_dotenv()
|
24 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
|
|
25 |
llm = ChatGroq(model="llama-3.1-70b-versatile")
|
26 |
|
27 |
-
PROMPT_TEMPLATE = """
|
28 |
-
You are an expert information extraction assistant designed to obtain specific details from the web and external sources.
|
29 |
-
You’ll be provided with an entity name and a query that specifies the type of information needed about that entity.
|
30 |
-
Please follow the instructions carefully and return only the most relevant, accurate information.
|
31 |
|
32 |
-
|
33 |
-
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
4. If the requested information isn’t available or verifiable, respond with "Information not available."
|
40 |
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
"""
|
|
|
46 |
|
47 |
-
#
|
48 |
-
def
|
49 |
-
|
50 |
-
|
51 |
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
return response[0].content if response else "Information not available"
|
57 |
|
58 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
st.set_page_config(page_title="DataScribe", page_icon=":notebook_with_decorative_cover:", layout="wide")
|
60 |
|
61 |
-
# Sidebar navigation
|
62 |
with st.sidebar:
|
63 |
selected = option_menu(
|
64 |
"DataScribe Menu",
|
@@ -68,146 +121,232 @@ with st.sidebar:
|
|
68 |
default_index=0
|
69 |
)
|
70 |
|
71 |
-
# Main header
|
72 |
-
st.title("DataScribe: AI-Powered Information Extractor")
|
73 |
-
|
74 |
-
# Initialize session states for data and results
|
75 |
-
if "data" not in st.session_state:
|
76 |
-
st.session_state["data"] = None
|
77 |
-
if "results" not in st.session_state:
|
78 |
-
st.session_state["results"] = None
|
79 |
-
if "column_selection" not in st.session_state:
|
80 |
-
st.session_state["column_selection"] = None
|
81 |
-
|
82 |
-
# Helper function for Google Sheets API setup
|
83 |
-
def get_google_sheet_data(sheet_id, range_name):
|
84 |
-
credentials = service_account.Credentials.from_service_account_info(st.secrets["gcp_service_account"])
|
85 |
-
service = build('sheets', 'v4', credentials=credentials)
|
86 |
-
sheet = service.spreadsheets()
|
87 |
-
result = sheet.values().get(spreadsheetId=sheet_id, range=range_name).execute()
|
88 |
-
values = result.get('values', [])
|
89 |
-
return pd.DataFrame(values[1:], columns=values[0])
|
90 |
-
|
91 |
-
# Function to write results back to Google Sheets
|
92 |
-
def update_google_sheet(sheet_id, range_name, data):
|
93 |
-
credentials = service_account.Credentials.from_service_account_info(st.secrets["gcp_service_account"])
|
94 |
-
service = build('sheets', 'v4', credentials=credentials)
|
95 |
-
sheet = service.spreadsheets()
|
96 |
-
body = {
|
97 |
-
'values': [data.columns.tolist()] + data.values.tolist()
|
98 |
-
}
|
99 |
-
sheet.values().update(
|
100 |
-
spreadsheetId=sheet_id,
|
101 |
-
range=range_name,
|
102 |
-
valueInputOption="RAW",
|
103 |
-
body=body
|
104 |
-
).execute()
|
105 |
-
|
106 |
-
# Home Page
|
107 |
if selected == "Home":
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
)
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
-
# Upload Data Section
|
119 |
elif selected == "Upload Data":
|
120 |
st.header("Upload or Connect Your Data")
|
121 |
-
|
122 |
-
|
123 |
-
data_source
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
st.
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
elif data_source == "Google Sheets":
|
133 |
sheet_id = st.text_input("Enter Google Sheet ID")
|
134 |
range_name = st.text_input("Enter the data range (e.g., Sheet1!A1:C100)")
|
|
|
135 |
if st.button("Fetch Data"):
|
136 |
-
|
137 |
-
|
138 |
-
st.
|
139 |
-
st.
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
elif selected == "Define Query":
|
145 |
st.header("Define Your Custom Query")
|
146 |
-
|
147 |
-
if st.session_state["data"] is
|
148 |
-
|
149 |
-
query_template = st.text_input("Define your query template", "Get me the email for {company}")
|
150 |
-
st.session_state["query_template"] = query_template
|
151 |
-
st.session_state["column_selection"] = column_selection # Store column selection in session state
|
152 |
-
|
153 |
-
st.write("### Example query preview")
|
154 |
-
if column_selection:
|
155 |
-
# Convert sample_entity to string to avoid replace errors
|
156 |
-
sample_entity = str(st.session_state["data"][column_selection].iloc[0])
|
157 |
-
example_query = query_template.replace("{company}", sample_entity)
|
158 |
-
st.code(example_query)
|
159 |
else:
|
160 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
-
# Extract Information Section with Progress Bar
|
163 |
elif selected == "Extract Information":
|
164 |
st.header("Extract Information")
|
165 |
|
166 |
-
if
|
167 |
-
st.write("
|
|
|
168 |
|
169 |
-
# Progress bar initialization
|
170 |
-
progress_bar = st.progress(0)
|
171 |
column_selection = st.session_state["column_selection"]
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
|
180 |
-
result_text = get_llm_response(entity, user_message)
|
181 |
-
results.append({"Entity": entity, "Extracted Information": result_text}) # Consistent key
|
182 |
|
183 |
-
|
184 |
-
|
|
|
|
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
st.dataframe(st.session_state["results"])
|
190 |
|
191 |
-
|
|
|
|
|
|
|
192 |
elif selected == "View & Download":
|
193 |
-
st.header("View
|
194 |
-
|
195 |
-
if
|
196 |
-
st.
|
197 |
-
st.
|
198 |
-
|
199 |
-
#
|
200 |
-
|
201 |
-
st.download_button(
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
else:
|
213 |
-
st.warning("No
|
|
|
6 |
from googleapiclient.discovery import build
|
7 |
from streamlit_chat import message as st_message
|
8 |
import plotly.express as px
|
9 |
+
import re
|
10 |
+
import warnings
|
11 |
+
import time
|
12 |
from langchain.schema import HumanMessage, SystemMessage, AIMessage
|
13 |
from langchain.chat_models import ChatOpenAI
|
14 |
from langchain.memory import ConversationBufferWindowMemory
|
15 |
from langchain.prompts import PromptTemplate
|
16 |
+
from langchain_community.utilities import GoogleSerperAPIWrapper
|
17 |
+
from langchain.agents import initialize_agent, Tool
|
18 |
+
from langchain.agents import AgentType
|
19 |
from langchain_groq import ChatGroq
|
20 |
import numpy as np
|
21 |
from dotenv import load_dotenv
|
|
|
22 |
|
23 |
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
24 |
|
25 |
+
#environment
|
26 |
load_dotenv()
|
27 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
28 |
+
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
|
29 |
llm = ChatGroq(model="llama-3.1-70b-versatile")
|
30 |
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
# Initialize Google Serper API wrapper
|
33 |
+
search = GoogleSerperAPIWrapper(serp_api_key=SERPER_API_KEY)
|
34 |
|
35 |
+
# Create the system and human messages for dynamic query processing
|
36 |
+
system_message_content = """
|
37 |
+
You are a helpful assistant designed to answer questions by extracting information from the web and external sources. Your goal is to provide the most relevant, concise, and accurate response to user queries.
|
38 |
+
"""
|
|
|
39 |
|
40 |
+
# Define the tool list
|
41 |
+
tools = [
|
42 |
+
Tool(
|
43 |
+
name="Web Search",
|
44 |
+
func=search.run,
|
45 |
+
description="Searches the web for information related to the query"
|
46 |
+
)
|
47 |
+
]
|
48 |
+
|
49 |
+
# Initialize the agent with the tools
|
50 |
+
agent = initialize_agent(
|
51 |
+
tools,
|
52 |
+
ChatGroq(api_key=GROQ_API_KEY, model="llama-3.1-70b-versatile"),
|
53 |
+
agent_type=AgentType.SELF_ASK_WITH_SEARCH,
|
54 |
+
verbose=True,
|
55 |
+
memory=ConversationBufferWindowMemory(k=5, return_messages=True)
|
56 |
+
)
|
57 |
+
|
58 |
+
# Function to perform the web search and get results
|
59 |
+
def perform_web_search(query):
|
60 |
+
search_results = search.run(query)
|
61 |
+
return search_results
|
62 |
+
|
63 |
+
# Function to get LLM response for dynamic queries
|
64 |
+
def get_llm_response(entity, query, web_results):
|
65 |
+
prompt = f"""
|
66 |
+
Extract relevant {query} (e.g., email, phone number) from the following web results for the entity: {entity}.
|
67 |
+
Web Results: {web_results}
|
68 |
+
"""
|
69 |
+
|
70 |
+
human_message_content = f"""
|
71 |
+
Entity: {entity}
|
72 |
+
Query: {query}
|
73 |
+
Web Results: {web_results}
|
74 |
+
"""
|
75 |
+
|
76 |
+
response = agent.invoke([system_message_content, human_message_content])
|
77 |
+
extracted_info = response.get("output", "Information not available").strip()
|
78 |
|
79 |
+
# Clean up irrelevant parts of the response
|
80 |
+
cleaned_info = re.sub(r"(Thought:|Action:)[^A-Za-z0-9]*", "", extracted_info).strip()
|
81 |
+
return cleaned_info
|
82 |
|
83 |
+
# Retry logic for multiple web searches if necessary
|
84 |
+
def refine_answer_with_searches(entity, query, max_retries=3):
|
85 |
+
search_results = perform_web_search(query.format(entity=entity))
|
86 |
+
extracted_answer = get_llm_response(entity, query, search_results)
|
87 |
|
88 |
+
retries = 0
|
89 |
+
while retries < max_retries:
|
90 |
+
if len(extracted_answer.split()) <= 2 or "not available" in extracted_answer.lower():
|
91 |
+
retries += 1
|
92 |
+
time.sleep(2)
|
93 |
+
search_results = perform_web_search(query.format(entity=entity))
|
94 |
+
extracted_answer = get_llm_response(entity, query, search_results)
|
95 |
+
else:
|
96 |
+
break
|
97 |
|
98 |
+
return extracted_answer, search_results
|
|
|
99 |
|
100 |
+
# Setup Google Sheets data fetch
|
101 |
+
def get_google_sheet_data(sheet_id, range_name):
|
102 |
+
creds = service_account.Credentials.from_service_account_info(
|
103 |
+
st.secrets["gcp_service_account"],
|
104 |
+
scopes=["https://www.googleapis.com/auth/spreadsheets.readonly"],
|
105 |
+
)
|
106 |
+
service = build("sheets", "v4", credentials=creds)
|
107 |
+
sheet = service.spreadsheets()
|
108 |
+
result = sheet.values().get(spreadsheetId=sheet_id, range=range_name).execute()
|
109 |
+
values = result.get("values", [])
|
110 |
+
return pd.DataFrame(values[1:], columns=values[0])
|
111 |
+
|
112 |
+
#streamlitconfiguration
|
113 |
st.set_page_config(page_title="DataScribe", page_icon=":notebook_with_decorative_cover:", layout="wide")
|
114 |
|
|
|
115 |
with st.sidebar:
|
116 |
selected = option_menu(
|
117 |
"DataScribe Menu",
|
|
|
121 |
default_index=0
|
122 |
)
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
if selected == "Home":
|
125 |
+
|
126 |
+
st.markdown("""
|
127 |
+
<h1 style="text-align:center; color:#4CAF50; font-size: 40px;">🚀 Welcome to DataScribe</h1>
|
128 |
+
<p style="text-align:center; font-size: 18px;">An AI-powered information extraction tool to streamline data retrieval and analysis.</p>
|
129 |
+
""", unsafe_allow_html=True)
|
130 |
+
|
131 |
+
st.markdown("""---""")
|
132 |
+
def feature_card(title, description, icon, page):
|
133 |
+
col1, col2 = st.columns([1, 4])
|
134 |
+
with col1:
|
135 |
+
st.markdown(f"<div style='font-size: 40px;'>{icon}</div>", unsafe_allow_html=True)
|
136 |
+
with col2:
|
137 |
+
if st.button(f"{title}", key=title):
|
138 |
+
st.session_state.selected_page = page
|
139 |
+
st.write(description)
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
col1, col2 = st.columns([1, 1])
|
144 |
+
|
145 |
+
with col1:
|
146 |
+
feature_card(
|
147 |
+
title="Upload Data",
|
148 |
+
description="Upload data from CSV or Google Sheets to get started with your extraction.",
|
149 |
+
icon="📄",
|
150 |
+
page="Upload Data"
|
151 |
+
)
|
152 |
+
|
153 |
+
with col2:
|
154 |
+
feature_card(
|
155 |
+
title="Define Custom Queries",
|
156 |
+
description="Set custom search queries for each entity in your dataset for specific information retrieval.",
|
157 |
+
icon="🔍",
|
158 |
+
page="Define Query"
|
159 |
+
)
|
160 |
+
|
161 |
+
col1, col2 = st.columns([1, 1])
|
162 |
+
|
163 |
+
with col1:
|
164 |
+
feature_card(
|
165 |
+
title="Run Automated Searches",
|
166 |
+
description="Execute automated web searches and extract relevant information using an AI-powered agent.",
|
167 |
+
icon="🤖",
|
168 |
+
page="Extract Information"
|
169 |
+
)
|
170 |
+
|
171 |
+
with col2:
|
172 |
+
feature_card(
|
173 |
+
title="View & Download Results",
|
174 |
+
description="View extracted data in a structured format and download as a CSV or update Google Sheets.",
|
175 |
+
icon="📊",
|
176 |
+
page="View & Download"
|
177 |
+
)
|
178 |
|
|
|
179 |
elif selected == "Upload Data":
|
180 |
st.header("Upload or Connect Your Data")
|
181 |
+
data_source = st.radio("Choose data source:", ["CSV Files", "Google Sheets"])
|
182 |
+
|
183 |
+
if data_source == "CSV Files":
|
184 |
+
if "data" in st.session_state:
|
185 |
+
st.success("Data uploaded successfully! Here is a preview:")
|
186 |
+
st.dataframe(st.session_state["data"])
|
187 |
+
else:
|
188 |
+
uploaded_files = st.file_uploader("Upload your CSV files", type=["csv"], accept_multiple_files=True)
|
189 |
+
|
190 |
+
if uploaded_files is not None:
|
191 |
+
dfs = []
|
192 |
+
for uploaded_file in uploaded_files:
|
193 |
+
try:
|
194 |
+
df = pd.read_csv(uploaded_file)
|
195 |
+
dfs.append(df)
|
196 |
+
except Exception as e:
|
197 |
+
st.error(f"Error reading file {uploaded_file.name}: {e}")
|
198 |
+
|
199 |
+
if dfs:
|
200 |
+
full_data = pd.concat(dfs, ignore_index=True)
|
201 |
+
st.session_state["data"] = full_data
|
202 |
+
st.success("Data uploaded successfully! Here is a preview:")
|
203 |
+
st.dataframe(full_data)
|
204 |
+
else:
|
205 |
+
st.warning("No valid data found in the uploaded files.")
|
206 |
|
207 |
elif data_source == "Google Sheets":
|
208 |
sheet_id = st.text_input("Enter Google Sheet ID")
|
209 |
range_name = st.text_input("Enter the data range (e.g., Sheet1!A1:C100)")
|
210 |
+
|
211 |
if st.button("Fetch Data"):
|
212 |
+
try:
|
213 |
+
data = get_google_sheet_data(sheet_id, range_name)
|
214 |
+
st.session_state["data"] = data
|
215 |
+
st.write("Data fetched successfully. Here is a preview:")
|
216 |
+
st.dataframe(data)
|
217 |
+
except Exception as e:
|
218 |
+
st.error(f"Error fetching data: {e}")
|
219 |
+
|
220 |
elif selected == "Define Query":
|
221 |
st.header("Define Your Custom Query")
|
222 |
+
|
223 |
+
if "data" not in st.session_state or st.session_state["data"] is None:
|
224 |
+
st.warning("Please upload data first!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
else:
|
226 |
+
column = st.selectbox("Select entity column", st.session_state["data"].columns)
|
227 |
+
|
228 |
+
st.markdown(f"""
|
229 |
+
<style>
|
230 |
+
div[data-baseweb="select"] div[data-id="select"] {{
|
231 |
+
background-color: #f0f8ff;
|
232 |
+
}}
|
233 |
+
</style>
|
234 |
+
""", unsafe_allow_html=True)
|
235 |
+
|
236 |
+
st.subheader("Define Fields to Extract")
|
237 |
+
num_fields = st.number_input("Number of fields to extract", min_value=1, value=1, step=1)
|
238 |
+
|
239 |
+
fields = []
|
240 |
+
for i in range(num_fields):
|
241 |
+
field = st.text_input(f"Field {i+1} name", key=f"field_{i}")
|
242 |
+
if field:
|
243 |
+
fields.append(field)
|
244 |
+
|
245 |
+
if fields:
|
246 |
+
st.subheader("Query Template")
|
247 |
+
query_template = st.text_area(
|
248 |
+
"Enter query template (Use '{entity}' to represent each entity)",
|
249 |
+
value=f"Find the {', '.join(fields)} for {{entity}}"
|
250 |
+
)
|
251 |
+
|
252 |
+
if "{entity}" in query_template:
|
253 |
+
example_entity = str(st.session_state["data"][column].iloc[0])
|
254 |
+
example_query = query_template.replace("{entity}", example_entity)
|
255 |
+
st.write("### Example Query Preview")
|
256 |
+
st.code(example_query)
|
257 |
+
|
258 |
+
if st.button("Save Query Configuration"):
|
259 |
+
st.session_state["column_selection"] = column
|
260 |
+
st.session_state["query_template"] = query_template
|
261 |
+
st.session_state["extraction_fields"] = fields
|
262 |
+
st.success("Query configuration saved!")
|
263 |
+
|
264 |
|
|
|
265 |
elif selected == "Extract Information":
|
266 |
st.header("Extract Information")
|
267 |
|
268 |
+
if "query_template" in st.session_state and "data" in st.session_state:
|
269 |
+
st.write("### Using Query Template:")
|
270 |
+
st.code(st.session_state["query_template"])
|
271 |
|
|
|
|
|
272 |
column_selection = st.session_state["column_selection"]
|
273 |
+
entities_column = st.session_state["data"][column_selection]
|
274 |
+
st.write("### Selected Entity Column:")
|
275 |
+
st.dataframe(entities_column)
|
276 |
+
|
277 |
+
st.write("Data extraction is in progress. This may take a few moments.")
|
278 |
+
|
279 |
+
# Custom styled progress bar
|
280 |
+
progress_bar = st.progress(0)
|
281 |
|
282 |
+
# Custom CSS for a cute progress bar style
|
283 |
+
st.markdown("""
|
284 |
+
<style>
|
285 |
+
.stProgress > div {
|
286 |
+
background-color: #FFB6C1; /* Light pink */
|
287 |
+
border-radius: 20px;
|
288 |
+
height: 15px;
|
289 |
+
}
|
290 |
+
</style>
|
291 |
+
""", unsafe_allow_html=True)
|
292 |
+
|
293 |
+
try:
|
294 |
+
results = []
|
295 |
+
for i, selected_entity in enumerate(entities_column):
|
296 |
+
user_query = st.session_state["query_template"].replace("{entity}", str(selected_entity))
|
297 |
+
final_answer, search_results = refine_answer_with_searches(selected_entity, user_query)
|
298 |
+
results.append({
|
299 |
+
"Entity": selected_entity,
|
300 |
+
"Extracted Information": final_answer,
|
301 |
+
"Search Results": search_results
|
302 |
+
})
|
303 |
+
|
304 |
+
# Update progress bar with a smooth and cute animation
|
305 |
+
progress_bar.progress(int((i + 1) / len(entities_column) * 100))
|
306 |
|
307 |
+
st.session_state["results"] = results
|
|
|
|
|
308 |
|
309 |
+
st.write("### Extracted Information")
|
310 |
+
for result in results:
|
311 |
+
st.write(f"**Entity:** {result['Entity']}")
|
312 |
+
st.write(f"**Extracted Information:** {result['Extracted Information']}")
|
313 |
|
314 |
+
st.write("### Web Results:")
|
315 |
+
for result in results:
|
316 |
+
st.write(result["Search Results"])
|
|
|
317 |
|
318 |
+
except Exception as e:
|
319 |
+
st.error(f"An error occurred while extracting information: {e}")
|
320 |
+
else:
|
321 |
+
st.warning("Please upload your data and define the query template.")
|
322 |
elif selected == "View & Download":
|
323 |
+
st.header("View & Download Results")
|
324 |
+
|
325 |
+
if "results" in st.session_state:
|
326 |
+
results_df = pd.DataFrame(st.session_state["results"])
|
327 |
+
st.write("### Results Preview")
|
328 |
+
|
329 |
+
st.dataframe(results_df.style.applymap(lambda val: 'background-color: #d3f4ff' if isinstance(val, str) else '', subset=["Extracted Information", "Search Results"]))
|
330 |
+
|
331 |
+
st.download_button(
|
332 |
+
label="Download all results as CSV",
|
333 |
+
data=results_df.to_csv(index=False),
|
334 |
+
file_name="extracted_results.csv",
|
335 |
+
mime="text/csv"
|
336 |
+
)
|
337 |
+
|
338 |
+
st.download_button(
|
339 |
+
label="Download Extracted Information as CSV",
|
340 |
+
data=results_df[["Entity", "Extracted Information"]].to_csv(index=False),
|
341 |
+
file_name="extracted_information.csv",
|
342 |
+
mime="text/csv"
|
343 |
+
)
|
344 |
+
|
345 |
+
st.download_button(
|
346 |
+
label="Download Web Results as CSV",
|
347 |
+
data=results_df[["Entity", "Search Results"]].to_csv(index=False),
|
348 |
+
file_name="web_results.csv",
|
349 |
+
mime="text/csv"
|
350 |
+
)
|
351 |
else:
|
352 |
+
st.warning("No results available to view. Please run the extraction process.")
|