Spaces:
Sleeping
Sleeping
samiee2213
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from streamlit_option_menu import option_menu
|
3 |
+
import pandas as pd
|
4 |
+
import os
|
5 |
+
from google.oauth2 import service_account
|
6 |
+
from googleapiclient.discovery import build
|
7 |
+
from streamlit_chat import message as st_message
|
8 |
+
import plotly.express as px
|
9 |
+
from langchain.schema import HumanMessage, SystemMessage, AIMessage
|
10 |
+
from langchain.chat_models import ChatOpenAI
|
11 |
+
from langchain.memory import ConversationBufferWindowMemory
|
12 |
+
from langchain.prompts import PromptTemplate
|
13 |
+
import warnings
|
14 |
+
import time
|
15 |
+
from langchain_groq import ChatGroq
|
16 |
+
import numpy as np
|
17 |
+
from dotenv import load_dotenv
|
18 |
+
import re
|
19 |
+
|
20 |
+
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
21 |
+
|
22 |
+
# Load environment variables
|
23 |
+
load_dotenv()
|
24 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
25 |
+
os.environ['GROQ_API_KEY'] = GROQ_API_KEY
|
26 |
+
llm = ChatGroq(model="llama-3.1-70b-versatile")
|
27 |
+
|
28 |
+
PROMPT_TEMPLATE = """
|
29 |
+
You are an expert information extraction assistant designed to obtain specific details from the web and external sources.
|
30 |
+
You’ll be provided with an entity name and a query that specifies the type of information needed about that entity.
|
31 |
+
Please follow the instructions carefully and return only the most relevant, accurate information.
|
32 |
+
|
33 |
+
#### Entity Name: {entity}
|
34 |
+
#### Query: {query}
|
35 |
+
|
36 |
+
Instructions:
|
37 |
+
1. Extract the information directly related to the entity.
|
38 |
+
2. If available, include only verified, publicly accessible data.
|
39 |
+
3. Provide information in a single sentence or a short, structured response.
|
40 |
+
4. If the requested information isn’t available or verifiable, respond with "Information not available."
|
41 |
+
|
42 |
+
#### Example Output Format:
|
43 |
+
"Company: {entity} | Requested Information: {extracted_information}"
|
44 |
+
|
45 |
+
Begin extraction.
|
46 |
+
"""
|
47 |
+
|
48 |
+
# Set up the page
|
49 |
+
st.set_page_config(page_title="DataScribe", page_icon=":notebook_with_decorative_cover:", layout="wide")
|
50 |
+
|
51 |
+
# Sidebar navigation
|
52 |
+
with st.sidebar:
|
53 |
+
selected = option_menu(
|
54 |
+
"DataScribe Menu",
|
55 |
+
["Home", "Upload Data", "Define Query", "Extract Information", "View & Download"],
|
56 |
+
icons=["house", "cloud-upload", "gear", "search", "table"],
|
57 |
+
menu_icon="cast",
|
58 |
+
default_index=0
|
59 |
+
)
|
60 |
+
|
61 |
+
# Main header
|
62 |
+
st.title("DataScribe: AI-Powered Information Extractor")
|
63 |
+
|
64 |
+
# Initialize session states for data and results
|
65 |
+
if "data" not in st.session_state:
|
66 |
+
st.session_state["data"] = None
|
67 |
+
if "results" not in st.session_state:
|
68 |
+
st.session_state["results"] = None
|
69 |
+
if "column_selection" not in st.session_state:
|
70 |
+
st.session_state["column_selection"] = None
|
71 |
+
|
72 |
+
# Helper function for Google Sheets API setup
|
73 |
+
def get_google_sheet_data(sheet_id, range_name):
|
74 |
+
credentials = service_account.Credentials.from_service_account_info(st.secrets["gcp_service_account"])
|
75 |
+
service = build('sheets', 'v4', credentials=credentials)
|
76 |
+
sheet = service.spreadsheets()
|
77 |
+
result = sheet.values().get(spreadsheetId=sheet_id, range=range_name).execute()
|
78 |
+
values = result.get('values', [])
|
79 |
+
return pd.DataFrame(values[1:], columns=values[0])
|
80 |
+
|
81 |
+
# Function to write results back to Google Sheets
|
82 |
+
def update_google_sheet(sheet_id, range_name, data):
|
83 |
+
credentials = service_account.Credentials.from_service_account_info(st.secrets["gcp_service_account"])
|
84 |
+
service = build('sheets', 'v4', credentials=credentials)
|
85 |
+
sheet = service.spreadsheets()
|
86 |
+
body = {
|
87 |
+
'values': [data.columns.tolist()] + data.values.tolist()
|
88 |
+
}
|
89 |
+
sheet.values().update(
|
90 |
+
spreadsheetId=sheet_id,
|
91 |
+
range=range_name,
|
92 |
+
valueInputOption="RAW",
|
93 |
+
body=body
|
94 |
+
).execute()
|
95 |
+
|
96 |
+
# Home Page
|
97 |
+
if selected == "Home":
|
98 |
+
st.markdown(
|
99 |
+
"""
|
100 |
+
### Welcome to DataScribe
|
101 |
+
**DataScribe** is an AI-powered tool designed to extract structured information from the web
|
102 |
+
based on entities in your data file. Start by uploading a CSV or Google Sheet and defining a
|
103 |
+
custom search query.
|
104 |
+
"""
|
105 |
+
)
|
106 |
+
st.image("https://via.placeholder.com/1200x400.png?text=DataScribe+AI+Agent+Dashboard") # Placeholder banner image
|
107 |
+
|
108 |
+
# Upload Data Section
|
109 |
+
elif selected == "Upload Data":
|
110 |
+
st.header("Upload or Connect Your Data")
|
111 |
+
|
112 |
+
# CSV Upload
|
113 |
+
data_source = st.radio("Choose data source:", ["CSV File", "Google Sheets"])
|
114 |
+
|
115 |
+
if data_source == "CSV File":
|
116 |
+
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
117 |
+
if uploaded_file:
|
118 |
+
st.session_state["data"] = pd.read_csv(uploaded_file)
|
119 |
+
st.write("### Preview of Uploaded Data")
|
120 |
+
st.dataframe(st.session_state["data"].head())
|
121 |
+
|
122 |
+
elif data_source == "Google Sheets":
|
123 |
+
sheet_id = st.text_input("Enter Google Sheet ID")
|
124 |
+
range_name = st.text_input("Enter the data range (e.g., Sheet1!A1:C100)")
|
125 |
+
if st.button("Fetch Data"):
|
126 |
+
if sheet_id and range_name:
|
127 |
+
st.session_state["data"] = get_google_sheet_data(sheet_id, range_name)
|
128 |
+
st.write("### Preview of Google Sheets Data")
|
129 |
+
st.dataframe(st.session_state["data"].head())
|
130 |
+
else:
|
131 |
+
st.warning("Please enter both the Google Sheet ID and range.")
|
132 |
+
|
133 |
+
# Define Query Section
|
134 |
+
elif selected == "Define Query":
|
135 |
+
st.header("Define Your Custom Query")
|
136 |
+
|
137 |
+
if st.session_state["data"] is not None:
|
138 |
+
column_selection = st.selectbox("Select the primary column for entities", options=st.session_state["data"].columns)
|
139 |
+
query_template = st.text_input("Define your query template", "Get me the email for {company}")
|
140 |
+
st.session_state["query_template"] = query_template
|
141 |
+
st.session_state["column_selection"] = column_selection # Store column selection in session state
|
142 |
+
|
143 |
+
st.write("### Example query preview")
|
144 |
+
if column_selection:
|
145 |
+
# Convert sample_entity to string to avoid replace errors
|
146 |
+
sample_entity = str(st.session_state["data"][column_selection].iloc[0])
|
147 |
+
example_query = query_template.replace("{company}", sample_entity)
|
148 |
+
st.code(example_query)
|
149 |
+
else:
|
150 |
+
st.warning("Please upload data first.")
|
151 |
+
|
152 |
+
# Extract Information Section with Progress Bar
|
153 |
+
elif selected == "Extract Information":
|
154 |
+
st.header("Extract Information")
|
155 |
+
|
156 |
+
if st.session_state.get("query_template") and st.session_state["data"] is not None and st.session_state["column_selection"] is not None:
|
157 |
+
st.write("Data extraction is in progress. This may take a few moments.")
|
158 |
+
|
159 |
+
# Progress bar initialization
|
160 |
+
progress_bar = st.progress(0)
|
161 |
+
column_selection = st.session_state["column_selection"]
|
162 |
+
progress_step = 1.0 / len(st.session_state["data"][column_selection])
|
163 |
+
|
164 |
+
results = []
|
165 |
+
for i, entity in enumerate(st.session_state["data"][column_selection]):
|
166 |
+
# Prepare the prompt for the model
|
167 |
+
user_message = st.session_state["query_template"].replace("{company}", str(entity))
|
168 |
+
formatted_prompt = PROMPT_TEMPLATE.format(entity=entity, query=user_message)
|
169 |
+
|
170 |
+
# Append user message to the flow history
|
171 |
+
st.session_state.flowmessages.append(HumanMessage(content=user_message))
|
172 |
+
|
173 |
+
# Generate response from the model
|
174 |
+
response = llm([SystemMessage(content=formatted_prompt)])
|
175 |
+
|
176 |
+
# Collect the model's response
|
177 |
+
result_text = response[0].content if response else "Information not available"
|
178 |
+
results.append({"Entity": entity, "Extracted Information": result_text})
|
179 |
+
|
180 |
+
# Update the progress bar
|
181 |
+
progress_bar.progress((i + 1) * progress_step)
|
182 |
+
|
183 |
+
# Save and display results
|
184 |
+
st.session_state["results"] = pd.DataFrame(results)
|
185 |
+
st.write("### Extracted Information")
|
186 |
+
st.dataframe(st.session_state["results"])
|
187 |
+
|
188 |
+
# View & Download Section with Google Sheets Update
|
189 |
+
elif selected == "View & Download":
|
190 |
+
st.header("View and Download Results")
|
191 |
+
|
192 |
+
if st.session_state["results"] is not None:
|
193 |
+
st.write("### Extracted Data Table")
|
194 |
+
st.dataframe(st.session_state["results"])
|
195 |
+
|
196 |
+
# Download as CSV
|
197 |
+
csv_data = st.session_state["results"].to_csv(index=False)
|
198 |
+
st.download_button("Download as CSV", csv_data, "datascribe_results.csv", "text/csv")
|
199 |
+
|
200 |
+
# Option to update Google Sheet
|
201 |
+
sheet_id = st.text_input("Enter Google Sheet ID to update with results")
|
202 |
+
range_name = st.text_input("Enter range (e.g., Sheet1!A1)")
|
203 |
+
if st.button("Update Google Sheet"):
|
204 |
+
try:
|
205 |
+
update_google_sheet(sheet_id, range_name, st.session_state["results"])
|
206 |
+
st.success("Google Sheet updated successfully!")
|
207 |
+
except Exception as e:
|
208 |
+
st.error(f"Failed to update Google Sheet: {e}")
|
209 |
+
else:
|
210 |
+
st.warning("No data available to view or download.")
|