import streamlit as st def CreatePage(): st.markdown("""

🚀 Welcome to DataScribe

An AI-powered information extraction tool to streamline data retrieval and analysis.

""", unsafe_allow_html=True) st.markdown("""---""") def feature_card(title, description, icon, page): col1, col2 = st.columns([1, 4]) with col1: st.markdown(f"
{icon}
", unsafe_allow_html=True) with col2: if st.button(f"{title}", key=title, help=description): st.session_state.selected_page = page st.markdown(f"

{description}

", unsafe_allow_html=True) col1, col2 = st.columns([1, 1]) with col1: feature_card( title="Upload Data", description="Upload data from CSV or Google Sheets to get started with your extraction.", icon="📄", page="Upload Data" ) with col2: feature_card( title="Define Custom Queries", description="Set custom search queries for each entity in your dataset for specific information retrieval.", icon="🔍", page="Define Query" ) col1, col2 = st.columns([1, 1]) with col1: feature_card( title="Run Automated Searches", description="Execute automated web searches and extract relevant information using an AI-powered agent.", icon="🤖", page="Extract Information" ) with col2: feature_card( title="View & Download Results", description="View extracted data in a structured format and download as a CSV or update Google Sheets.", icon="📊", page="View & Download" ) return True