samim2024 commited on
Commit
cd183a7
·
verified ·
1 Parent(s): 342cc30

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -25,7 +25,7 @@ from langchain.chains import RetrievalQA
25
  #tasks such as sentiment analysis, entity extraction, and content creation. The types of content that the PaLM 2 for
26
  #Text models can create include document summaries, answers to questions, and labels that classify content.
27
 
28
- llm = HuggingFaceEndpoint(repo_id="mistralai/Mistral-7B-Instruct-v0.2", Temperature=0.9)
29
  #model = SentenceTransformer("all-MiniLM-L6-v2")
30
 
31
  #llm = VertexAI(model_name="text-bison@001",max_output_tokens=256,temperature=0.1,top_p=0.8,top_k=40,verbose=True,)
@@ -51,7 +51,7 @@ def get_text(url):
51
  for paragraph in paragraphs:
52
  file.write(paragraph.get_text() + "\n")
53
 
54
- #@st.cache_resource
55
  def create_langchain_index(input_text):
56
  print("--indexing---")
57
  get_text(input_text)
@@ -65,8 +65,8 @@ def create_langchain_index(input_text):
65
  # load it into Chroma
66
  db = Chroma.from_documents(docs, embeddings)
67
  persist_directory = "chroma_db"
68
- #vectordb = Chroma.from_documents(documents=docs, embedding=embeddings, persist_directory=persist_directory)
69
- #new_db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
70
  return db
71
 
72
  # @st.cache_resource
@@ -79,7 +79,7 @@ def create_langchain_index(input_text):
79
  # return summary_response,tweet_response,ln_response
80
 
81
 
82
- #@st.cache_data
83
  def get_response(input_text,query,db):
84
  print(f"--querying---{query}")
85
  retrieval_chain = RetrievalQA.from_chain_type(llm, chain_type="stuff", retriever=db.as_retriever())
 
25
  #tasks such as sentiment analysis, entity extraction, and content creation. The types of content that the PaLM 2 for
26
  #Text models can create include document summaries, answers to questions, and labels that classify content.
27
 
28
+ llm = HuggingFaceEndpoint(repo_id="mistralai/Mistral-7B-Instruct-v0.2", Temperature=0.3)
29
  #model = SentenceTransformer("all-MiniLM-L6-v2")
30
 
31
  #llm = VertexAI(model_name="text-bison@001",max_output_tokens=256,temperature=0.1,top_p=0.8,top_k=40,verbose=True,)
 
51
  for paragraph in paragraphs:
52
  file.write(paragraph.get_text() + "\n")
53
 
54
+ @st.cache_resource
55
  def create_langchain_index(input_text):
56
  print("--indexing---")
57
  get_text(input_text)
 
65
  # load it into Chroma
66
  db = Chroma.from_documents(docs, embeddings)
67
  persist_directory = "chroma_db"
68
+ vectordb = Chroma.from_documents(documents=docs, embedding=embeddings, persist_directory=persist_directory)
69
+ db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
70
  return db
71
 
72
  # @st.cache_resource
 
79
  # return summary_response,tweet_response,ln_response
80
 
81
 
82
+ @st.cache_data
83
  def get_response(input_text,query,db):
84
  print(f"--querying---{query}")
85
  retrieval_chain = RetrievalQA.from_chain_type(llm, chain_type="stuff", retriever=db.as_retriever())