|
import torch |
|
import torch.nn as nn |
|
import torch.utils.model_zoo as model_zoo |
|
from torch.nn import functional as F |
|
|
|
|
|
class VGG(nn.Module): |
|
def __init__(self, features): |
|
super(VGG, self).__init__() |
|
self.features = features |
|
self.reg_layer = nn.Sequential( |
|
nn.Conv2d(512, 256, kernel_size=3, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(256, 128, kernel_size=3, padding=1), |
|
nn.ReLU(inplace=True), |
|
) |
|
self.density_layer = nn.Sequential(nn.Conv2d(128, 1, 1), nn.ReLU()) |
|
|
|
def forward(self, x): |
|
x = self.features(x) |
|
x = F.upsample_bilinear(x, scale_factor=2) |
|
x = self.reg_layer(x) |
|
mu = self.density_layer(x) |
|
B, C, H, W = mu.size() |
|
mu_sum = mu.view([B, -1]).sum(1).unsqueeze(1).unsqueeze(2).unsqueeze(3) |
|
mu_normed = mu / (mu_sum + 1e-6) |
|
return mu, mu_normed |
|
|
|
def make_layers(cfg, batch_norm=False): |
|
layers = [] |
|
in_channels = 3 |
|
for v in cfg: |
|
if v == 'M': |
|
layers += [nn.MaxPool2d(kernel_size=2, stride=2)] |
|
else: |
|
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) |
|
if batch_norm: |
|
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] |
|
else: |
|
layers += [conv2d, nn.ReLU(inplace=True)] |
|
in_channels = v |
|
return nn.Sequential(*layers) |
|
|
|
cfg = { |
|
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512] |
|
} |
|
|
|
def vgg19(): |
|
"""VGG 19-layer model (configuration "E") |
|
model pre-trained on ImageNet |
|
""" |
|
model = VGG(make_layers(cfg['E'])) |
|
return model |