Spaces:
Build error
Build error
import math | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
from torch import Tensor | |
from torch.nn import Module, TransformerEncoder | |
from layer import TransformerEncoderLayer, _get_activation_fn | |
from utils import SeqBN, bool_mask_to_att_mask | |
class TransformerModel(nn.Module): | |
def __init__(self, encoder, n_out, ninp, nhead, nhid, nlayers, dropout=0.0, style_encoder=None, y_encoder=None, | |
pos_encoder=None, decoder=None, input_normalization=False, init_method=None, pre_norm=False, | |
activation='gelu', recompute_attn=False, num_global_att_tokens=0, full_attention=False, | |
all_layers_same_init=True): | |
super().__init__() | |
self.model_type = 'Transformer' | |
encoder_layer_creator = lambda: TransformerEncoderLayer(ninp, nhead, nhid, dropout, activation=activation, | |
pre_norm=pre_norm, recompute_attn=recompute_attn) | |
self.transformer_encoder = TransformerEncoder(encoder_layer_creator(), nlayers)\ | |
if all_layers_same_init else TransformerEncoderDiffInit(encoder_layer_creator, nlayers) | |
self.ninp = ninp | |
self.encoder = encoder | |
self.y_encoder = y_encoder | |
self.pos_encoder = pos_encoder | |
self.decoder = decoder(ninp, nhid, n_out) if decoder is not None else nn.Sequential(nn.Linear(ninp, nhid), nn.GELU(), nn.Linear(nhid, n_out)) | |
self.input_ln = SeqBN(ninp) if input_normalization else None | |
self.style_encoder = style_encoder | |
self.init_method = init_method | |
if num_global_att_tokens is not None: | |
assert not full_attention | |
self.global_att_embeddings = nn.Embedding(num_global_att_tokens, ninp) if num_global_att_tokens else None | |
self.full_attention = full_attention | |
self.n_out = n_out | |
self.nhid = nhid | |
self.init_weights() | |
def generate_square_subsequent_mask(sz): | |
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) | |
return bool_mask_to_att_mask(mask) | |
def generate_D_q_matrix(sz, query_size): | |
train_size = sz-query_size | |
mask = torch.zeros(sz,sz) == 0 | |
mask[:,train_size:].zero_() | |
mask |= torch.eye(sz) == 1 | |
return bool_mask_to_att_mask(mask) | |
def generate_global_att_query_matrix(num_global_att_tokens, seq_len, num_query_tokens): | |
train_size = seq_len + num_global_att_tokens - num_query_tokens | |
sz = seq_len + num_global_att_tokens | |
mask = torch.zeros(num_query_tokens, sz) == 0 | |
mask[:,train_size:].zero_() | |
mask[:,train_size:] |= torch.eye(num_query_tokens) == 1 | |
return bool_mask_to_att_mask(mask) | |
def generate_global_att_trainset_matrix(num_global_att_tokens, seq_len, num_query_tokens): | |
train_size = seq_len + num_global_att_tokens - num_query_tokens | |
trainset_size = seq_len - num_query_tokens | |
mask = torch.zeros(trainset_size, num_global_att_tokens) == 0 | |
#mask[:,num_global_att_tokens:].zero_() | |
#mask[:,num_global_att_tokens:] |= torch.eye(trainset_size) == 1 | |
return bool_mask_to_att_mask(mask) | |
def generate_global_att_globaltokens_matrix(num_global_att_tokens, seq_len, num_query_tokens): | |
mask = torch.zeros(num_global_att_tokens, num_global_att_tokens+seq_len-num_query_tokens) == 0 | |
return bool_mask_to_att_mask(mask) | |
def init_weights(self): | |
initrange = 1. | |
# if isinstance(self.encoder,EmbeddingEncoder): | |
# self.encoder.weight.data.uniform_(-initrange, initrange) | |
# self.decoder.bias.data.zero_() | |
# self.decoder.weight.data.uniform_(-initrange, initrange) | |
if self.init_method is not None: | |
self.apply(self.init_method) | |
for layer in self.transformer_encoder.layers: | |
nn.init.zeros_(layer.linear2.weight) | |
nn.init.zeros_(layer.linear2.bias) | |
attns = layer.self_attn if isinstance(layer.self_attn, nn.ModuleList) else [layer.self_attn] | |
for attn in attns: | |
nn.init.zeros_(attn.out_proj.weight) | |
nn.init.zeros_(attn.out_proj.bias) | |
def forward(self, src, src_mask=None, single_eval_pos=None): | |
assert isinstance(src, tuple), 'fuse_x_y is forbidden, that is inputs have to be given as (x,y) or (style,x,y)' | |
if len(src) == 2: | |
src = (None,) + src | |
style_src, style_src_size = (src[0], (0 if (src[0] is None) else 1)) | |
if src_mask is not None: assert self.global_att_embeddings is None or isinstance(src_mask, tuple) | |
if src_mask is None: | |
x_src = src[1] | |
if self.global_att_embeddings is None: | |
full_len = len(x_src) + style_src_size | |
if self.full_attention: | |
src_mask = bool_mask_to_att_mask(torch.ones((full_len, full_len), dtype=torch.bool)).to(x_src.device) | |
else: | |
src_mask = self.generate_D_q_matrix(len(x_src) + style_src_size, len(x_src) + style_src_size -single_eval_pos).to(x_src.device) | |
else: | |
src_mask_args = (self.global_att_embeddings.num_embeddings, | |
len(x_src) + style_src_size, | |
len(x_src) + style_src_size - single_eval_pos) | |
src_mask = (self.generate_global_att_globaltokens_matrix(*src_mask_args).to(x_src.device), | |
self.generate_global_att_trainset_matrix(*src_mask_args).to(x_src.device), | |
self.generate_global_att_query_matrix(*src_mask_args).to(x_src.device)) | |
style_src, x_src, y_src = src | |
x_src = self.encoder(x_src) | |
y_src = self.y_encoder(y_src.unsqueeze(-1) if len(y_src.shape) < len(x_src.shape) else y_src) | |
style_src = self.style_encoder(style_src).unsqueeze(0) if self.style_encoder else torch.tensor([], device=x_src.device) | |
global_src = torch.tensor([], device=x_src.device) if self.global_att_embeddings is None else \ | |
self.global_att_embeddings.weight.unsqueeze(1).repeat(1, x_src.shape[1], 1) | |
train_x = x_src[:single_eval_pos] + y_src[:single_eval_pos] | |
src = torch.cat([global_src, style_src, train_x, x_src[single_eval_pos:]], 0) | |
if self.input_ln is not None: | |
src = self.input_ln(src) | |
if self.pos_encoder is not None: | |
src = self.pos_encoder(src) | |
# If we have style input, drop its output | |
output = self.transformer_encoder(src, src_mask)[style_src_size:] | |
output = self.decoder(output) | |
return output[single_eval_pos+(self.global_att_embeddings.num_embeddings if self.global_att_embeddings else 0):] | |
def init_from_small_model(self, small_model): | |
assert isinstance(self.decoder, nn.Linear) and isinstance(self.encoder, (nn.Linear, nn.Sequential)) \ | |
and isinstance(self.y_encoder, (nn.Linear, nn.Sequential)) | |
def set_encoder_weights(my_encoder, small_model_encoder): | |
my_encoder_linear, small_encoder_linear = (my_encoder, small_model_encoder) \ | |
if isinstance(my_encoder, nn.Linear) else (my_encoder[-1], small_model_encoder[-1]) | |
small_in_dim = small_encoder_linear.out_features | |
my_encoder_linear.weight.zero_() | |
my_encoder_linear.bias.zero_() | |
my_encoder_linear.weight[:small_in_dim] = small_encoder_linear.weight | |
my_encoder_linear.bias[:small_in_dim] = small_encoder_linear.bias | |
set_encoder_weights(self.encoder, small_model.encoder) | |
set_encoder_weights(self.y_encoder, small_model.y_encoder) | |
small_in_dim = small_model.decoder.in_features | |
self.decoder.weight[:, :small_in_dim] = small_model.decoder.weight | |
self.decoder.bias = small_model.decoder.bias | |
for my_layer, small_layer in zip(self.transformer_encoder.layers, small_model.transformer_encoder.layers): | |
small_hid_dim = small_layer.linear1.out_features | |
my_in_dim = my_layer.linear1.in_features | |
# packed along q,k,v order in first dim | |
my_in_proj_w = my_layer.self_attn.in_proj_weight | |
small_in_proj_w = small_layer.self_attn.in_proj_weight | |
my_in_proj_w.view(3, my_in_dim, my_in_dim)[:, :small_in_dim, :small_in_dim] = small_in_proj_w.view(3, | |
small_in_dim, | |
small_in_dim) | |
my_layer.self_attn.in_proj_bias.view(3, my_in_dim)[:, | |
:small_in_dim] = small_layer.self_attn.in_proj_bias.view(3, small_in_dim) | |
my_layer.self_attn.out_proj.weight[:small_in_dim, :small_in_dim] = small_layer.self_attn.out_proj.weight | |
my_layer.self_attn.out_proj.bias[:small_in_dim] = small_layer.self_attn.out_proj.bias | |
my_layer.linear1.weight[:small_hid_dim, :small_in_dim] = small_layer.linear1.weight | |
my_layer.linear1.bias[:small_hid_dim] = small_layer.linear1.bias | |
my_layer.linear2.weight[:small_in_dim, :small_hid_dim] = small_layer.linear2.weight | |
my_layer.linear2.bias[:small_in_dim] = small_layer.linear2.bias | |
my_layer.norm1.weight[:small_in_dim] = math.sqrt(small_in_dim / my_in_dim) * small_layer.norm1.weight | |
my_layer.norm2.weight[:small_in_dim] = math.sqrt(small_in_dim / my_in_dim) * small_layer.norm2.weight | |
my_layer.norm1.bias[:small_in_dim] = small_layer.norm1.bias | |
my_layer.norm2.bias[:small_in_dim] = small_layer.norm2.bias | |
class TransformerEncoderDiffInit(Module): | |
r"""TransformerEncoder is a stack of N encoder layers | |
Args: | |
encoder_layer_creator: a function generating objects of TransformerEncoderLayer class without args (required). | |
num_layers: the number of sub-encoder-layers in the encoder (required). | |
norm: the layer normalization component (optional). | |
""" | |
__constants__ = ['norm'] | |
def __init__(self, encoder_layer_creator, num_layers, norm=None): | |
super().__init__() | |
self.layers = nn.ModuleList([encoder_layer_creator() for _ in range(num_layers)]) | |
self.num_layers = num_layers | |
self.norm = norm | |
def forward(self, src: Tensor, mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None) -> Tensor: | |
r"""Pass the input through the encoder layers in turn. | |
Args: | |
src: the sequence to the encoder (required). | |
mask: the mask for the src sequence (optional). | |
src_key_padding_mask: the mask for the src keys per batch (optional). | |
Shape: | |
see the docs in Transformer class. | |
""" | |
output = src | |
for mod in self.layers: | |
output = mod(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask) | |
if self.norm is not None: | |
output = self.norm(output) | |
return output | |