import math import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import TransformerEncoder, TransformerEncoderLayer class _PositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.): super().__init__() self.dropout = nn.Dropout(p=dropout) self.d_model = d_model self.device_test_tensor = nn.Parameter(torch.tensor(1.)) def forward(self, x):# T x B x num_features assert self.d_model % x.shape[-1]*2 == 0 d_per_feature = self.d_model // x.shape[-1] pe = torch.zeros(*x.shape, d_per_feature, device=self.device_test_tensor.device) #position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) interval_size = 10 div_term = (1./interval_size) * 2*math.pi*torch.exp(torch.arange(0, d_per_feature, 2, device=self.device_test_tensor.device).float()*math.log(math.sqrt(2))) #print(div_term/2/math.pi) pe[..., 0::2] = torch.sin(x.unsqueeze(-1) * div_term) pe[..., 1::2] = torch.cos(x.unsqueeze(-1) * div_term) return self.dropout(pe).view(x.shape[0],x.shape[1],self.d_model) class EmbeddingEncoder(nn.Module): def __init__(self, num_features, em_size, num_embs=100): super().__init__() self.num_embs = num_embs self.embeddings = nn.Embedding(num_embs * num_features, em_size, max_norm=True) self.init_weights(.1) self.min_max = (-2,+2) @property def width(self): return self.min_max[1] - self.min_max[0] def init_weights(self, initrange): self.embeddings.weight.data.uniform_(-initrange, initrange) def discretize(self, x): split_size = self.width / self.num_embs return (x - self.min_max[0] // split_size).int().clamp(0, self.num_embs - 1) def forward(self, x): # T x B x num_features x_idxs = self.discretize(x) x_idxs += torch.arange(x.shape[-1], device=x.device).view(1, 1, -1) * self.num_embs # print(x_idxs,self.embeddings.weight.shape) return self.embeddings(x_idxs).mean(-2) Linear = nn.Linear MLP = lambda num_features, emsize: nn.Sequential(nn.Linear(num_features+1,emsize*2), nn.ReLU(), nn.Linear(emsize*2,emsize)) class Conv(nn.Module): def __init__(self, input_size, emsize): super().__init__() self.convs = torch.nn.ModuleList([nn.Conv2d(64 if i else 1, 64, 3) for i in range(5)]) self.linear = nn.Linear(64,emsize) def forward(self, x): size = math.isqrt(x.shape[-1]) assert size*size == x.shape[-1] x = x.reshape(*x.shape[:-1], 1, size, size) for conv in self.convs: if x.shape[-1] < 4: break x = conv(x) x.relu_() x = nn.AdaptiveAvgPool2d((1,1))(x).squeeze(-1).squeeze(-1) return self.linear(x) Positional = lambda _, emsize: _PositionalEncoding(d_model=emsize) class CanEmb(nn.Embedding): def __init__(self, num_features, num_embeddings: int, embedding_dim: int, *args, **kwargs): assert embedding_dim % num_features == 0 embedding_dim = embedding_dim // num_features super().__init__(num_embeddings, embedding_dim, *args, **kwargs) def forward(self, x): x = super().forward(x) return x.view(*x.shape[:-2], -1) def get_Canonical(num_classes): return lambda num_features, emsize: CanEmb(num_features, num_classes, emsize) def get_Embedding(num_embs_per_feature=100): return lambda num_features, emsize: EmbeddingEncoder(num_features, emsize, num_embs=num_embs_per_feature)