File size: 14,605 Bytes
24ce802 d4c84c4 24ce802 d4c84c4 24ce802 d4c84c4 24ce802 3e841d9 d4c84c4 3e841d9 d4c84c4 24ce802 d4c84c4 24ce802 d4c84c4 24ce802 d4c84c4 24ce802 d4c84c4 3e841d9 d4c84c4 3e841d9 d4c84c4 3e841d9 d4c84c4 3e841d9 d4c84c4 3e841d9 d4c84c4 24ce802 d4c84c4 24ce802 d4c84c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
import functools
import io
import json
import logging
import math
import os
import pathlib
import random
import beartype
import einops.layers.torch
import gradio as gr
import numpy as np
import open_clip
import requests
import saev.nn
import torch
from jaxtyping import Float, jaxtyped
from PIL import Image, ImageDraw
from torch import Tensor
from torchvision.transforms import v2
log_format = "[%(asctime)s] [%(levelname)s] [%(name)s] %(message)s"
logging.basicConfig(level=logging.INFO, format=log_format)
logger = logging.getLogger("app.py")
####################
# Global Constants #
####################
DEBUG = True
"""Whether we are debugging."""
n_sae_latents = 3
"""Number of SAE latents to show."""
n_sae_examples = 4
"""Number of SAE examples per latent to show."""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
"""Hardware accelerator, if any."""
vit_ckpt = "ViT-B-16/openai"
"""CLIP checkpoint."""
n_patches_per_img: int = 196
"""Number of patches per image in vit_ckpt."""
max_frequency = 1e-1
"""Maximum frequency. Any feature that fires more than this is ignored."""
CWD = pathlib.Path(__file__).parent
r2_url = "https://pub-289086e849214430853bc87bd8964988.r2.dev/"
logger.info("Set global constants.")
###########
# Helpers #
###########
@beartype.beartype
def get_cache_dir() -> str:
"""
Get cache directory from environment variables, defaulting to the current working directory (.)
Returns:
A path to a cache directory (might not exist yet).
"""
cache_dir = ""
for var in ("HF_HOME", "HF_HUB_CACHE"):
cache_dir = cache_dir or os.environ.get(var, "")
return cache_dir or "."
@beartype.beartype
def load_model(fpath: str | pathlib.Path, *, device: str = "cpu") -> torch.nn.Module:
"""
Loads a linear layer from disk.
"""
with open(fpath, "rb") as fd:
kwargs = json.loads(fd.readline().decode())
buffer = io.BytesIO(fd.read())
model = torch.nn.Linear(**kwargs)
state_dict = torch.load(buffer, weights_only=True, map_location=device)
model.load_state_dict(state_dict)
model = model.to(device)
return model
@beartype.beartype
@functools.lru_cache(maxsize=512)
def get_dataset_img(i: int) -> Image.Image:
return Image.open(requests.get(r2_url + image_fpaths[i], stream=True).raw)
@beartype.beartype
def make_img(
img: Image.Image,
patches: Float[Tensor, " n_patches"],
*,
upper: int | None = None,
) -> Image.Image:
# Resize to 256x256 and crop to 224x224
resize_size_px = (512, 512)
resize_w_px, resize_h_px = resize_size_px
crop_size_px = (448, 448)
crop_w_px, crop_h_px = crop_size_px
crop_coords_px = (
(resize_w_px - crop_w_px) // 2,
(resize_h_px - crop_h_px) // 2,
(resize_w_px + crop_w_px) // 2,
(resize_h_px + crop_h_px) // 2,
)
img = img.resize(resize_size_px).crop(crop_coords_px)
img = add_highlights(img, patches.numpy(), upper=upper, opacity=0.5)
return img
##########
# Models #
##########
@jaxtyped(typechecker=beartype.beartype)
class SplitClip(torch.nn.Module):
def __init__(self, *, n_end_layers: int):
super().__init__()
if vit_ckpt.startswith("hf-hub:"):
clip, _ = open_clip.create_model_from_pretrained(
vit_ckpt, cache_dir=get_cache_dir()
)
else:
arch, ckpt = vit_ckpt.split("/")
clip, _ = open_clip.create_model_from_pretrained(
arch, pretrained=ckpt, cache_dir=get_cache_dir()
)
model = clip.visual
model.proj = None
model.output_tokens = True # type: ignore
self.vit = model.eval()
assert not isinstance(self.vit, open_clip.timm_model.TimmModel)
self.n_end_layers = n_end_layers
@staticmethod
def _expand_token(token, batch_size: int):
return token.view(1, 1, -1).expand(batch_size, -1, -1)
def forward_start(self, x: Float[Tensor, "batch channels width height"]):
x = self.vit.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
# class embeddings and positional embeddings
x = torch.cat(
[self._expand_token(self.vit.class_embedding, x.shape[0]).to(x.dtype), x],
dim=1,
)
# shape = [*, grid ** 2 + 1, width]
x = x + self.vit.positional_embedding.to(x.dtype)
x = self.vit.patch_dropout(x)
x = self.vit.ln_pre(x)
for r in self.vit.transformer.resblocks[: -self.n_end_layers]:
x = r(x)
return x
def forward_end(self, x: Float[Tensor, "batch n_patches dim"]):
for r in self.vit.transformer.resblocks[-self.n_end_layers :]:
x = r(x)
x = self.vit.ln_post(x)
pooled, _ = self.vit._global_pool(x)
if self.vit.proj is not None:
pooled = pooled @ self.vit.proj
return pooled
# ViT
split_vit = SplitClip(n_end_layers=1)
split_vit = split_vit.to(device)
logger.info("Initialized CLIP ViT.")
# Linear classifier
clf_ckpt_fpath = CWD / "ckpts" / "clf.pt"
clf = load_model(clf_ckpt_fpath)
clf = clf.to(device).eval()
logger.info("Loaded linear classifier.")
# SAE
sae_ckpt_fpath = CWD / "ckpts" / "sae.pt"
sae = saev.nn.load(sae_ckpt_fpath.as_posix())
sae.to(device).eval()
logger.info("Loaded SAE.")
############
# Datasets #
############
human_transform = v2.Compose([
v2.Resize((512, 512), interpolation=v2.InterpolationMode.NEAREST),
v2.CenterCrop((448, 448)),
v2.ToImage(),
einops.layers.torch.Rearrange("channels width height -> width height channels"),
])
arch, ckpt = vit_ckpt.split("/")
_, vit_transform = open_clip.create_model_from_pretrained(
arch, pretrained=ckpt, cache_dir=get_cache_dir()
)
with open(CWD / "data" / "image_fpaths.json") as fd:
image_fpaths = json.load(fd)
with open(CWD / "data" / "image_labels.json") as fd:
image_labels = json.load(fd)
logger.info("Loaded all datasets.")
#############
# Variables #
#############
@beartype.beartype
def load_tensor(path: str | pathlib.Path) -> Tensor:
return torch.load(path, weights_only=True, map_location="cpu")
top_img_i = load_tensor(CWD / "data" / "top_img_i.pt")
top_values = load_tensor(CWD / "data" / "top_values_uint8.pt")
sparsity = load_tensor(CWD / "data" / "sparsity.pt")
mask = torch.ones((sae.cfg.d_sae), dtype=bool)
mask = mask & (sparsity < max_frequency)
#############
# Inference #
#############
@beartype.beartype
def get_image(image_i: int) -> list[Image.Image | int]:
image = get_dataset_img(image_i)
image = human_transform(image)
return [Image.fromarray(image.numpy()), image_labels[image_i]]
@beartype.beartype
def get_random_class_image(cls: int) -> Image.Image:
indices = [i for i, tgt in enumerate(image_labels) if tgt == cls]
i = random.choice(indices)
image = get_dataset_img(i)
image = human_transform(image)
return Image.fromarray(image.numpy())
@torch.inference_mode
def get_sae_examples(
image_i: int, patches: list[int]
) -> list[None | Image.Image | int]:
"""
Given a particular cell, returns some highlighted images showing what feature fires most on this cell.
"""
if not patches:
return [None] * 12 + [-1] * 3
logger.info("Getting SAE examples for patches %s.", patches)
img = get_dataset_img(image_i)
x = vit_transform(img)[None, ...].to(device)
x_BPD = split_vit.forward_start(x)
# Need to add 1 to account for [CLS] token.
vit_acts_MD = x_BPD[0, [p + 1 for p in patches]].to(device)
_, f_x_MS, _ = sae(vit_acts_MD)
f_x_S = f_x_MS.sum(axis=0)
latents = torch.argsort(f_x_S, descending=True).cpu()
latents = latents[mask[latents]][:n_sae_latents].tolist()
images = []
for latent in latents:
img_patch_pairs, seen_i_im = [], set()
for i_im, values_p in zip(top_img_i[latent].tolist(), top_values[latent]):
if i_im in seen_i_im:
continue
example_img = get_dataset_img(i_im)
img_patch_pairs.append((example_img, values_p))
seen_i_im.add(i_im)
# How to scale values.
upper = None
if top_values[latent].numel() > 0:
upper = top_values[latent].max().item()
latent_images = [
make_img(img, patches.to(float), upper=upper)
for img, patches in img_patch_pairs[:n_sae_examples]
]
while len(latent_images) < n_sae_examples:
latent_images += [None]
images.extend(latent_images)
return images + latents
@torch.inference_mode
def get_pred_dist(i: int) -> dict[int, float]:
img = get_dataset_img(i)
x = vit_transform(img)[None, ...].to(device)
x_BPD = split_vit.forward_start(x)
x_BD = split_vit.forward_end(x_BPD)
logits_BC = clf(x_BD)
probs = torch.nn.functional.softmax(logits_BC[0], dim=0).cpu().tolist()
return {i: prob for i, prob in enumerate(probs)}
@torch.inference_mode
def get_modified_dist(
image_i: int,
patches: list[int],
latent1: int,
latent2: int,
latent3: int,
value1: float,
value2: float,
value3: float,
) -> dict[int, float]:
img = get_dataset_img(image_i)
x = vit_transform(img)[None, ...].to(device)
x_BPD = split_vit.forward_start(x)
cls_B1D, x_BPD = x_BPD[:, :1, :], x_BPD[:, 1:, :]
x_hat_BPD, f_x_BPS, _ = sae(x_BPD)
err_BPD = x_BPD - x_hat_BPD
values = torch.tensor(
[
unscaled(value, top_values[latent].max().item())
for value, latent in [
(value1, latent1),
(value2, latent2),
(value3, latent3),
]
],
device=device,
)
patches = torch.tensor(patches, device=device)
latents = torch.tensor([latent1, latent2, latent3], device=device)
f_x_BPS[:, patches[:, None], latents[None, :]] = values
# Reproduce the SAE forward pass after f_x
modified_x_hat_BPD = (
einops.einsum(
f_x_BPS,
sae.W_dec,
"batch patches d_sae, d_sae d_vit -> batch patches d_vit",
)
+ sae.b_dec
)
modified_BPD = torch.cat([cls_B1D, err_BPD + modified_x_hat_BPD], axis=1)
modified_BD = split_vit.forward_end(modified_BPD)
logits_BC = clf(modified_BD)
probs = torch.nn.functional.softmax(logits_BC[0], dim=0).cpu().tolist()
return {i: prob for i, prob in enumerate(probs)}
@beartype.beartype
def unscaled(x: float | int, max_obs: float | int) -> float:
"""Scale from [-20, 20] to [20 * -max_obs, 20 * max_obs]."""
return map_range(x, (-20.0, 20.0), (-20.0 * max_obs, 20.0 * max_obs))
@beartype.beartype
def map_range(
x: float | int,
domain: tuple[float | int, float | int],
range: tuple[float | int, float | int],
):
a, b = domain
c, d = range
if not (a <= x <= b):
raise ValueError(f"x={x:.3f} must be in {[a, b]}.")
return c + (x - a) * (d - c) / (b - a)
@jaxtyped(typechecker=beartype.beartype)
def add_highlights(
img: Image.Image,
patches: Float[np.ndarray, " n_patches"],
*,
upper: int | None = None,
opacity: float = 0.9,
) -> Image.Image:
if not len(patches):
return img
iw_np, ih_np = int(math.sqrt(len(patches))), int(math.sqrt(len(patches)))
iw_px, ih_px = img.size
pw_px, ph_px = iw_px // iw_np, ih_px // ih_np
assert iw_np * ih_np == len(patches)
# Create a transparent overlay
overlay = Image.new("RGBA", img.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(overlay)
# Using semi-transparent red (255, 0, 0, alpha)
for p, val in enumerate(patches):
assert upper is not None
val /= upper + 1e-9
x_np, y_np = p % iw_np, p // ih_np
draw.rectangle(
[
(x_np * pw_px, y_np * ph_px),
(x_np * pw_px + pw_px, y_np * ph_px + ph_px),
],
fill=(int(val * 256), 0, 0, int(opacity * val * 256)),
)
# Composite the original image and the overlay
return Image.alpha_composite(img.convert("RGBA"), overlay)
#############
# Interface #
#############
with gr.Blocks() as demo:
image_number = gr.Number(label="Test Example", precision=0)
class_number = gr.Number(label="Test Class", precision=0)
input_image = gr.Image(label="Input Image")
get_input_image_btn = gr.Button(value="Get Input Image")
get_input_image_btn.click(
get_image,
inputs=[image_number],
outputs=[input_image, class_number],
api_name="get-image",
)
get_random_class_image_btn = gr.Button(value="Get Random Class Image")
get_input_image_btn.click(
get_random_class_image,
inputs=[image_number],
outputs=[input_image],
api_name="get-random-class-image",
)
patch_numbers = gr.CheckboxGroup(
label="Image Patch", choices=list(range(n_patches_per_img))
)
top_latent_numbers = gr.CheckboxGroup(label="Top Latents")
top_latent_numbers = [
gr.Number(label=f"Top Latents #{j + 1}", precision=0)
for j in range(n_sae_latents)
]
sae_example_images = [
gr.Image(label=f"Latent #{j}, Example #{i + 1}")
for i in range(n_sae_examples)
for j in range(n_sae_latents)
]
get_sae_examples_btn = gr.Button(value="Get SAE Examples")
get_sae_examples_btn.click(
get_sae_examples,
inputs=[image_number, patch_numbers],
outputs=sae_example_images + top_latent_numbers,
api_name="get-sae-examples",
concurrency_limit=16,
)
pred_dist = gr.Label(label="Pred. Dist.")
get_pred_dist_btn = gr.Button(value="Get Pred. Distribution")
get_pred_dist_btn.click(
get_pred_dist,
inputs=[image_number],
outputs=[pred_dist],
api_name="get-preds",
)
latent_numbers = [gr.Number(label=f"Latent {i + 1}", precision=0) for i in range(3)]
value_sliders = [
gr.Slider(label=f"Value {i + 1}", minimum=-10, maximum=10) for i in range(3)
]
get_modified_dist_btn = gr.Button(value="Get Modified Label")
get_modified_dist_btn.click(
get_modified_dist,
inputs=[image_number, patch_numbers] + latent_numbers + value_sliders,
outputs=[pred_dist],
api_name="get-modified",
concurrency_limit=16,
)
if __name__ == "__main__":
demo.launch()
|