Samuel Stevens
Update colors
5db6fa7
import base64
import functools
import io
import logging
import random
import beartype
import einops.layers.torch
import numpy as np
import requests
import torch
from jaxtyping import Int, Integer, UInt8, jaxtyped
from PIL import Image, ImageDraw
from torch import Tensor
from torchvision.transforms import v2
logger = logging.getLogger("data.py")
R2_URL = "https://pub-129e98faed1048af94c4d4119ea47be7.r2.dev"
@beartype.beartype
@functools.lru_cache(maxsize=512)
def get_img(i: int) -> Image.Image:
fpath = f"/images/ADE_val_{i + 1:08}.jpg"
url = R2_URL + fpath
logger.info("Getting image from '%s'.", url)
return Image.open(requests.get(url, stream=True).raw)
@beartype.beartype
@functools.lru_cache(maxsize=512)
def get_seg(i: int) -> Image.Image:
fpath = f"/annotations/ADE_val_{i + 1:08}.png"
url = R2_URL + fpath
logger.info("Getting annotations from '%s'.", url)
return Image.open(requests.get(url, stream=True).raw)
@jaxtyped(typechecker=beartype.beartype)
def make_colors() -> UInt8[np.ndarray, "n 3"]:
values = (0, 51, 102, 153, 204, 255)
colors = []
for r in values:
for g in values:
for b in values:
colors.append((r, g, b))
# Fixed seed
random.Random(42).shuffle(colors)
colors = np.array(colors, dtype=np.uint8)
# Fixed colors. Must be synced with Segmentation.elm.
colors[2] = np.array([201, 249, 255], dtype=np.uint8)
colors[2] = np.array([201, 249, 255], dtype=np.uint8)
colors[4] = np.array([151, 204, 4], dtype=np.uint8)
colors[13] = np.array([104, 139, 88], dtype=np.uint8)
colors[16] = np.array([54, 48, 32], dtype=np.uint8)
colors[21] = np.array([120, 202, 210], dtype=np.uint8) # water
colors[26] = np.array([45, 125, 210], dtype=np.uint8)
colors[29] = np.array([116, 142, 84], dtype=np.uint8)
colors[46] = np.array([238, 185, 2], dtype=np.uint8)
colors[52] = np.array([88, 91, 86], dtype=np.uint8)
colors[60] = np.array([72, 99, 156], dtype=np.uint8) # river
colors[72] = np.array([76, 46, 5], dtype=np.uint8)
colors[94] = np.array([12, 15, 10], dtype=np.uint8)
return colors
colors = make_colors()
resize_transform = v2.Compose([
v2.Resize((512, 512), interpolation=v2.InterpolationMode.NEAREST),
v2.CenterCrop((448, 448)),
])
@beartype.beartype
def to_sized(img_raw: Image.Image) -> Image.Image:
return resize_transform(img_raw)
u8_transform = v2.Compose([
v2.ToImage(),
einops.layers.torch.Rearrange("() width height -> width height"),
])
@beartype.beartype
def to_u8(seg_raw: Image.Image) -> UInt8[Tensor, "width height"]:
return u8_transform(seg_raw)
@jaxtyped(typechecker=beartype.beartype)
def upsample(
x_WH: Int[Tensor, "width_ps height_ps"],
) -> UInt8[Tensor, "width_px height_px"]:
return (
torch.nn.functional.interpolate(
x_WH.view((1, 1, 16, 16)).float(),
scale_factor=28,
)
.view((448, 448))
.type(torch.uint8)
)
@jaxtyped(typechecker=beartype.beartype)
def u8_to_overlay(
map: Integer[Tensor, "width_ps height_ps"],
img: Image.Image,
*,
opacity: float = 0.5,
) -> Image.Image:
iw_np, ih_np = map.shape
iw_px, ih_px = img.size
pw_px, ph_px = iw_px // iw_np, ih_px // ih_np
# Create a transparent overlay
overlay = Image.new("RGBA", img.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(overlay)
# Using semi-transparent red (255, 0, 0, alpha)
for p, i in enumerate(map.view(-1).tolist()):
x_np, y_np = p % iw_np, p // ih_np
draw.rectangle(
[
(x_np * pw_px, y_np * ph_px),
(x_np * pw_px + pw_px, y_np * ph_px + ph_px),
],
fill=(*colors[i - 1], int(opacity * 256)),
)
# Composite the original image and the overlay
return Image.alpha_composite(img.convert("RGBA"), overlay)
@jaxtyped(typechecker=beartype.beartype)
def u8_to_img(map: UInt8[Tensor, "width height"]) -> Image.Image:
map = map.cpu().numpy()
width, height = map.shape
colored = np.zeros((width, height, 3), dtype=np.uint8)
for i, color in enumerate(colors):
colored[map == i + 1, :] = color
return Image.fromarray(colored)
@jaxtyped(typechecker=beartype.beartype)
def to_classes(map: Integer[Tensor, "width height"]) -> list[int]:
# Integer is any signed or unsigned int: https://docs.kidger.site/jaxtyping/api/array/#dtype
return list(set(map.view(-1).tolist()))
@beartype.beartype
def img_to_base64(img: Image.Image) -> str:
buf = io.BytesIO()
img.save(buf, format="webp", lossless=True)
b64 = base64.b64encode(buf.getvalue())
s64 = b64.decode("utf8")
return "data:image/webp;base64," + s64