Samuel Stevens
commited on
Commit
·
dc20bdb
0
Parent(s):
initial commit
Browse files- .python-version +1 -0
- README.md +0 -0
- app.py +512 -0
- data.py +0 -0
- justfile +9 -0
- pyproject.toml +20 -0
.python-version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
3.12
|
README.md
ADDED
File without changes
|
app.py
ADDED
@@ -0,0 +1,512 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path
|
2 |
+
import typing
|
3 |
+
import functools
|
4 |
+
|
5 |
+
import beartype
|
6 |
+
import einops
|
7 |
+
import einops.layers.torch
|
8 |
+
import gradio as gr
|
9 |
+
import torch
|
10 |
+
from jaxtyping import Float, Int, UInt8, jaxtyped
|
11 |
+
from PIL import Image
|
12 |
+
from torch import Tensor
|
13 |
+
|
14 |
+
import saev.activations
|
15 |
+
import saev.config
|
16 |
+
import saev.nn
|
17 |
+
import saev.visuals
|
18 |
+
|
19 |
+
from .. import training
|
20 |
+
from . import data
|
21 |
+
|
22 |
+
####################
|
23 |
+
# Global Constants #
|
24 |
+
####################
|
25 |
+
|
26 |
+
|
27 |
+
DEBUG = False
|
28 |
+
"""Whether we are debugging."""
|
29 |
+
|
30 |
+
max_frequency = 1e-2
|
31 |
+
"""Maximum frequency. Any feature that fires more than this is ignored."""
|
32 |
+
|
33 |
+
ckpt = "oebd6e6i"
|
34 |
+
"""Which SAE checkpoint to use."""
|
35 |
+
|
36 |
+
n_sae_latents = 3
|
37 |
+
"""Number of SAE latents to show."""
|
38 |
+
|
39 |
+
n_sae_examples = 4
|
40 |
+
"""Number of SAE examples per latent to show."""
|
41 |
+
|
42 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
43 |
+
"""Hardware accelerator, if any."""
|
44 |
+
|
45 |
+
RESIZE_SIZE = 512
|
46 |
+
"""Resize shorter size to this size in pixels."""
|
47 |
+
|
48 |
+
CROP_SIZE = (448, 448)
|
49 |
+
"""Crop size in pixels."""
|
50 |
+
|
51 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
52 |
+
"""Hardware accelerator, if any."""
|
53 |
+
|
54 |
+
####################
|
55 |
+
# Helper Functions #
|
56 |
+
####################
|
57 |
+
|
58 |
+
|
59 |
+
@beartype.beartype
|
60 |
+
def load_tensor(path: str) -> Tensor:
|
61 |
+
return torch.load(path, weights_only=True, map_location="cpu")
|
62 |
+
|
63 |
+
|
64 |
+
##########
|
65 |
+
# Models #
|
66 |
+
##########
|
67 |
+
|
68 |
+
|
69 |
+
@functools.cache
|
70 |
+
def load_vit(
|
71 |
+
model_cfg: modeling.Config,
|
72 |
+
) -> tuple[
|
73 |
+
activations.WrappedVisionTransformer,
|
74 |
+
typing.Callable,
|
75 |
+
float,
|
76 |
+
Float[Tensor, " d_vit"],
|
77 |
+
]:
|
78 |
+
vit = (
|
79 |
+
saev.activations.WrappedVisionTransformer(model_cfg.wrapped_cfg)
|
80 |
+
.to(DEVICE)
|
81 |
+
.eval()
|
82 |
+
)
|
83 |
+
vit_transform = saev.activations.make_img_transform(
|
84 |
+
model_cfg.vit_family, model_cfg.vit_ckpt
|
85 |
+
)
|
86 |
+
logger.info("Loaded ViT: %s.", model_cfg.key)
|
87 |
+
|
88 |
+
try:
|
89 |
+
# Normalizing constants
|
90 |
+
acts_dataset = saev.activations.Dataset(model_cfg.acts_cfg)
|
91 |
+
logger.info("Loaded dataset norms: %s.", model_cfg.key)
|
92 |
+
except RuntimeError as err:
|
93 |
+
logger.warning("Error loading ViT: %s", err)
|
94 |
+
return None, None, None, None
|
95 |
+
|
96 |
+
return vit, vit_transform, acts_dataset.scalar.item(), acts_dataset.act_mean
|
97 |
+
|
98 |
+
|
99 |
+
sae_ckpt_fpath = f"/home/stevens.994/projects/saev/checkpoints/{ckpt}/sae.pt"
|
100 |
+
sae = saev.nn.load(sae_ckpt_fpath)
|
101 |
+
sae.to(device).eval()
|
102 |
+
|
103 |
+
|
104 |
+
head_ckpt_fpath = "/home/stevens.994/projects/saev/checkpoints/contrib/semseg/lr_0_001__wd_0_001/model_step8000.pt"
|
105 |
+
head = training.load(head_ckpt_fpath)
|
106 |
+
head = head.to(device).eval()
|
107 |
+
|
108 |
+
|
109 |
+
class RestOfDinoV2(torch.nn.Module):
|
110 |
+
def __init__(self, *, n_end_layers: int):
|
111 |
+
super().__init__()
|
112 |
+
self.vit = torch.hub.load("facebookresearch/dinov2", "dinov2_vitb14_reg")
|
113 |
+
self.n_end_layers = n_end_layers
|
114 |
+
|
115 |
+
def forward_start(self, x: Float[Tensor, "batch channels width height"]):
|
116 |
+
x_BPD = self.vit.prepare_tokens_with_masks(x)
|
117 |
+
for blk in self.vit.blocks[: -self.n_end_layers]:
|
118 |
+
x_BPD = blk(x_BPD)
|
119 |
+
|
120 |
+
return x_BPD
|
121 |
+
|
122 |
+
def forward_end(self, x_BPD: Float[Tensor, "batch n_patches dim"]):
|
123 |
+
for blk in self.vit.blocks[-self.n_end_layers :]:
|
124 |
+
x_BPD = blk(x_BPD)
|
125 |
+
|
126 |
+
x_BPD = self.vit.norm(x_BPD)
|
127 |
+
return x_BPD[:, self.vit.num_register_tokens + 1 :]
|
128 |
+
|
129 |
+
|
130 |
+
rest_of_vit = RestOfDinoV2(n_end_layers=1)
|
131 |
+
rest_of_vit = rest_of_vit.to(device)
|
132 |
+
|
133 |
+
|
134 |
+
####################
|
135 |
+
# Global Variables #
|
136 |
+
####################
|
137 |
+
|
138 |
+
|
139 |
+
ckpt_data_root = (
|
140 |
+
f"/research/nfs_su_809/workspace/stevens.994/saev/features/{ckpt}/sort_by_patch"
|
141 |
+
)
|
142 |
+
|
143 |
+
top_img_i = load_tensor(os.path.join(ckpt_data_root, "top_img_i.pt"))
|
144 |
+
top_values = load_tensor(os.path.join(ckpt_data_root, "top_values.pt"))
|
145 |
+
sparsity = load_tensor(os.path.join(ckpt_data_root, "sparsity.pt"))
|
146 |
+
|
147 |
+
|
148 |
+
mask = torch.ones((sae.cfg.d_sae), dtype=bool)
|
149 |
+
mask = mask & (sparsity < max_frequency)
|
150 |
+
|
151 |
+
|
152 |
+
############
|
153 |
+
# Datasets #
|
154 |
+
############
|
155 |
+
|
156 |
+
|
157 |
+
# in1k_dataset = saev.activations.get_dataset(
|
158 |
+
# saev.config.ImagenetDataset(),
|
159 |
+
# img_transform=v2.Compose([
|
160 |
+
# v2.Resize(size=(512, 512)),
|
161 |
+
# v2.CenterCrop(size=(448, 448)),
|
162 |
+
# ]),
|
163 |
+
# )
|
164 |
+
|
165 |
+
|
166 |
+
# acts_dataset = saev.activations.Dataset(
|
167 |
+
# saev.config.DataLoad(
|
168 |
+
# shard_root="/local/scratch/stevens.994/cache/saev/a1f842330bb568b2fb05c15d4fa4252fb7f5204837335000d9fd420f120cd03e",
|
169 |
+
# scale_mean=not DEBUG,
|
170 |
+
# scale_norm=not DEBUG,
|
171 |
+
# layer=-2,
|
172 |
+
# )
|
173 |
+
# )
|
174 |
+
|
175 |
+
|
176 |
+
# vit_dataset = saev.activations.Ade20k(
|
177 |
+
# saev.config.Ade20kDataset(
|
178 |
+
# root="/research/nfs_su_809/workspace/stevens.994/datasets/ade20k/"
|
179 |
+
# ),
|
180 |
+
# img_transform=v2.Compose([
|
181 |
+
# v2.Resize(size=(256, 256)),
|
182 |
+
# v2.CenterCrop(size=(224, 224)),
|
183 |
+
# v2.ToImage(),
|
184 |
+
# v2.ToDtype(torch.float32, scale=True),
|
185 |
+
# v2.Normalize(mean=[0.4850, 0.4560, 0.4060], std=[0.2290, 0.2240, 0.2250]),
|
186 |
+
# ]),
|
187 |
+
# )
|
188 |
+
|
189 |
+
|
190 |
+
#######################
|
191 |
+
# Inference Functions #
|
192 |
+
#######################
|
193 |
+
|
194 |
+
|
195 |
+
@beartype.beartype
|
196 |
+
class Example(typing.TypedDict):
|
197 |
+
"""Represents an example image and its associated label.
|
198 |
+
|
199 |
+
Used to store examples of SAE latent activations for visualization.
|
200 |
+
"""
|
201 |
+
|
202 |
+
orig_url: str
|
203 |
+
"""The URL or path to access the original example image."""
|
204 |
+
highlighted_url: str
|
205 |
+
"""The URL or path to access the SAE-highlighted image."""
|
206 |
+
index: int
|
207 |
+
"""Dataset index."""
|
208 |
+
|
209 |
+
|
210 |
+
@beartype.beartype
|
211 |
+
class SaeActivation(typing.TypedDict):
|
212 |
+
"""Represents the activation pattern of a single SAE latent across patches.
|
213 |
+
|
214 |
+
This captures how strongly a particular SAE latent fires on different patches of an input image.
|
215 |
+
"""
|
216 |
+
|
217 |
+
latent: int
|
218 |
+
"""The index of the SAE latent being measured."""
|
219 |
+
|
220 |
+
highlighted_url: str
|
221 |
+
"""The image with the colormaps applied."""
|
222 |
+
|
223 |
+
activations: list[float]
|
224 |
+
"""The activation values of this latent across different patches. Each value represents how strongly this latent fired on a particular patch."""
|
225 |
+
|
226 |
+
examples: list[Example]
|
227 |
+
"""Top examples for this latent."""
|
228 |
+
|
229 |
+
|
230 |
+
@beartype.beartype
|
231 |
+
def get_image(image_i: int) -> tuple[str, str, int]:
|
232 |
+
img_sized, labels_sized = data.get_sample(image_i)
|
233 |
+
|
234 |
+
return data.pil_to_base64(img_sized), data.pil_to_base64(labels_sized), image_i
|
235 |
+
|
236 |
+
|
237 |
+
@beartype.beartype
|
238 |
+
@torch.inference_mode
|
239 |
+
def get_sae_activations(image_i: int, patches: list[int]) -> list[SaeActivation]:
|
240 |
+
"""
|
241 |
+
Given a particular cell, returns some highlighted images showing what feature fires most on this cell.
|
242 |
+
"""
|
243 |
+
if not patches:
|
244 |
+
return []
|
245 |
+
|
246 |
+
vit, vit_transform, scalar, mean = load_vit(model_cfg)
|
247 |
+
if vit is None:
|
248 |
+
logger.warning("Skipping ViT '%s'", model_name)
|
249 |
+
return []
|
250 |
+
sae = load_sae(model_cfg)
|
251 |
+
|
252 |
+
mean = mean.to(DEVICE)
|
253 |
+
x = vit_transform(img_p)[None, ...].to(DEVICE)
|
254 |
+
|
255 |
+
_, vit_acts_BLPD = vit(x)
|
256 |
+
vit_acts_PD = (vit_acts_BLPD[0, 0, 1:].to(DEVICE).clamp(-1e-5, 1e5) - mean) / scalar
|
257 |
+
|
258 |
+
_, f_x_PS, _ = sae(vit_acts_PD)
|
259 |
+
# Ignore [CLS] token and get just the requested latents.
|
260 |
+
acts_SP = einops.rearrange(f_x_PS, "patches n_latents -> n_latents patches")
|
261 |
+
logger.info("Got SAE activations for '%s'.", model_name)
|
262 |
+
top_img_i, top_values = load_tensors(model_cfg)
|
263 |
+
logger.info("Loaded top SAE activations for '%s'.", model_name)
|
264 |
+
|
265 |
+
breakpoint()
|
266 |
+
|
267 |
+
vit_acts_MD = torch.stack([
|
268 |
+
acts_dataset[image_i * acts_dataset.metadata.n_patches_per_img + i]["act"]
|
269 |
+
for i in patches
|
270 |
+
]).to(device)
|
271 |
+
|
272 |
+
_, f_x_MS, _ = sae(vit_acts_MD)
|
273 |
+
f_x_S = f_x_MS.sum(axis=0)
|
274 |
+
|
275 |
+
latents = torch.argsort(f_x_S, descending=True).cpu()
|
276 |
+
latents = latents[mask[latents]][:n_sae_latents].tolist()
|
277 |
+
|
278 |
+
images = []
|
279 |
+
for latent in latents:
|
280 |
+
elems, seen_i_im = [], set()
|
281 |
+
for i_im, values_p in zip(top_img_i[latent].tolist(), top_values[latent]):
|
282 |
+
if i_im in seen_i_im:
|
283 |
+
continue
|
284 |
+
|
285 |
+
example = in1k_dataset[i_im]
|
286 |
+
elems.append(
|
287 |
+
saev.visuals.GridElement(example["image"], example["label"], values_p)
|
288 |
+
)
|
289 |
+
seen_i_im.add(i_im)
|
290 |
+
|
291 |
+
# How to scale values.
|
292 |
+
upper = None
|
293 |
+
if top_values[latent].numel() > 0:
|
294 |
+
upper = top_values[latent].max().item()
|
295 |
+
|
296 |
+
latent_images = [make_img(elem, upper=upper) for elem in elems[:n_sae_examples]]
|
297 |
+
|
298 |
+
while len(latent_images) < n_sae_examples:
|
299 |
+
latent_images += [None]
|
300 |
+
|
301 |
+
images.extend(latent_images)
|
302 |
+
|
303 |
+
return images + latents
|
304 |
+
|
305 |
+
|
306 |
+
@torch.inference_mode
|
307 |
+
def get_true_labels(image_i: int) -> Image.Image:
|
308 |
+
seg = human_dataset[image_i]["segmentation"]
|
309 |
+
image = seg_to_img(seg)
|
310 |
+
return image
|
311 |
+
|
312 |
+
|
313 |
+
@torch.inference_mode
|
314 |
+
def get_pred_labels(i: int) -> list[Image.Image | list[int]]:
|
315 |
+
sample = vit_dataset[i]
|
316 |
+
x = sample["image"][None, ...].to(device)
|
317 |
+
x_BPD = rest_of_vit.forward_start(x)
|
318 |
+
x_BPD = rest_of_vit.forward_end(x_BPD)
|
319 |
+
|
320 |
+
x_WHD = einops.rearrange(x_BPD, "() (w h) dim -> w h dim", w=16, h=16)
|
321 |
+
|
322 |
+
logits_WHC = head(x_WHD)
|
323 |
+
|
324 |
+
pred_WH = logits_WHC.argmax(axis=-1)
|
325 |
+
preds = einops.rearrange(pred_WH, "w h -> (w h)").tolist()
|
326 |
+
return [seg_to_img(upsample(pred_WH)), preds]
|
327 |
+
|
328 |
+
|
329 |
+
@beartype.beartype
|
330 |
+
def unscaled(x: float, max_obs: float) -> float:
|
331 |
+
"""Scale from [-10, 10] to [10 * -max_obs, 10 * max_obs]."""
|
332 |
+
return map_range(x, (-10.0, 10.0), (-10.0 * max_obs, 10.0 * max_obs))
|
333 |
+
|
334 |
+
|
335 |
+
@beartype.beartype
|
336 |
+
def map_range(
|
337 |
+
x: float,
|
338 |
+
domain: tuple[float | int, float | int],
|
339 |
+
range: tuple[float | int, float | int],
|
340 |
+
):
|
341 |
+
a, b = domain
|
342 |
+
c, d = range
|
343 |
+
if not (a <= x <= b):
|
344 |
+
raise ValueError(f"x={x:.3f} must be in {[a, b]}.")
|
345 |
+
return c + (x - a) * (d - c) / (b - a)
|
346 |
+
|
347 |
+
|
348 |
+
@torch.inference_mode
|
349 |
+
def get_modified_labels(
|
350 |
+
i: int,
|
351 |
+
latent1: int,
|
352 |
+
latent2: int,
|
353 |
+
latent3: int,
|
354 |
+
value1: float,
|
355 |
+
value2: float,
|
356 |
+
value3: float,
|
357 |
+
) -> list[Image.Image | list[int]]:
|
358 |
+
sample = vit_dataset[i]
|
359 |
+
x = sample["image"][None, ...].to(device)
|
360 |
+
x_BPD = rest_of_vit.forward_start(x)
|
361 |
+
|
362 |
+
x_hat_BPD, f_x_BPS, _ = sae(x_BPD)
|
363 |
+
|
364 |
+
err_BPD = x_BPD - x_hat_BPD
|
365 |
+
|
366 |
+
values = torch.tensor(
|
367 |
+
[
|
368 |
+
unscaled(float(value), top_values[latent].max().item())
|
369 |
+
for value, latent in [
|
370 |
+
(value1, latent1),
|
371 |
+
(value2, latent2),
|
372 |
+
(value3, latent3),
|
373 |
+
]
|
374 |
+
],
|
375 |
+
device=device,
|
376 |
+
)
|
377 |
+
f_x_BPS[..., torch.tensor([latent1, latent2, latent3], device=device)] = values
|
378 |
+
|
379 |
+
# Reproduce the SAE forward pass after f_x
|
380 |
+
modified_x_hat_BPD = (
|
381 |
+
einops.einsum(
|
382 |
+
f_x_BPS,
|
383 |
+
sae.W_dec,
|
384 |
+
"batch patches d_sae, d_sae d_vit -> batch patches d_vit",
|
385 |
+
)
|
386 |
+
+ sae.b_dec
|
387 |
+
)
|
388 |
+
modified_BPD = err_BPD + modified_x_hat_BPD
|
389 |
+
|
390 |
+
modified_BPD = rest_of_vit.forward_end(modified_BPD)
|
391 |
+
|
392 |
+
logits_BPC = head(modified_BPD)
|
393 |
+
pred_P = logits_BPC[0].argmax(axis=-1)
|
394 |
+
pred_WH = einops.rearrange(pred_P, "(w h) -> w h", w=16, h=16)
|
395 |
+
return seg_to_img(upsample(pred_WH)), pred_P.tolist()
|
396 |
+
|
397 |
+
|
398 |
+
@jaxtyped(typechecker=beartype.beartype)
|
399 |
+
@torch.inference_mode
|
400 |
+
def upsample(
|
401 |
+
x_WH: Int[Tensor, "width_ps height_ps"],
|
402 |
+
) -> UInt8[Tensor, "width_px height_px"]:
|
403 |
+
return (
|
404 |
+
torch.nn.functional.interpolate(
|
405 |
+
x_WH.view((1, 1, 16, 16)).float(),
|
406 |
+
scale_factor=28,
|
407 |
+
)
|
408 |
+
.view((448, 448))
|
409 |
+
.type(torch.uint8)
|
410 |
+
)
|
411 |
+
|
412 |
+
|
413 |
+
@beartype.beartype
|
414 |
+
def make_img(
|
415 |
+
elem: saev.visuals.GridElement, *, upper: float | None = None
|
416 |
+
) -> Image.Image:
|
417 |
+
# Resize to 256x256 and crop to 224x224
|
418 |
+
resize_size_px = (512, 512)
|
419 |
+
resize_w_px, resize_h_px = resize_size_px
|
420 |
+
crop_size_px = (448, 448)
|
421 |
+
crop_w_px, crop_h_px = crop_size_px
|
422 |
+
crop_coords_px = (
|
423 |
+
(resize_w_px - crop_w_px) // 2,
|
424 |
+
(resize_h_px - crop_h_px) // 2,
|
425 |
+
(resize_w_px + crop_w_px) // 2,
|
426 |
+
(resize_h_px + crop_h_px) // 2,
|
427 |
+
)
|
428 |
+
|
429 |
+
img = elem.img.resize(resize_size_px).crop(crop_coords_px)
|
430 |
+
img = saev.imaging.add_highlights(
|
431 |
+
img, elem.patches.numpy(), upper=upper, opacity=0.5
|
432 |
+
)
|
433 |
+
return img
|
434 |
+
|
435 |
+
|
436 |
+
with gr.Blocks() as demo:
|
437 |
+
image_number = gr.Number(label="Validation Example")
|
438 |
+
|
439 |
+
input_image_base64 = gr.Text(label="Image in Base64")
|
440 |
+
true_labels_base64 = gr.Text(label="Labels in Base64")
|
441 |
+
|
442 |
+
get_input_image_btn = gr.Button(value="Get Input Image")
|
443 |
+
get_input_image_btn.click(
|
444 |
+
get_image,
|
445 |
+
inputs=[image_number],
|
446 |
+
outputs=[input_image_base64, true_labels_base64, image_number],
|
447 |
+
api_name="get-image",
|
448 |
+
)
|
449 |
+
|
450 |
+
# input_image = gr.Image(
|
451 |
+
# label="Input Image",
|
452 |
+
# sources=["upload", "clipboard"],
|
453 |
+
# type="pil",
|
454 |
+
# interactive=True,
|
455 |
+
# )
|
456 |
+
# patch_numbers = gr.CheckboxGroup(label="Image Patch", choices=list(range(256)))
|
457 |
+
# top_latent_numbers = gr.CheckboxGroup(label="Top Latents")
|
458 |
+
# top_latent_numbers = [
|
459 |
+
# gr.Number(label="Top Latents #{j+1}") for j in range(n_sae_latents)
|
460 |
+
# ]
|
461 |
+
# sae_example_images = [
|
462 |
+
# gr.Image(label=f"Latent #{j}, Example #{i + 1}", format="png")
|
463 |
+
# for i in range(n_sae_examples)
|
464 |
+
# for j in range(n_sae_latents)
|
465 |
+
# ]
|
466 |
+
|
467 |
+
patches_json = gr.JSON(label="Patches", value=[])
|
468 |
+
activations_json = gr.JSON(label="Activations", value=[])
|
469 |
+
|
470 |
+
get_sae_activations_btn = gr.Button(value="Get SAE Activations")
|
471 |
+
get_sae_activations_btn.click(
|
472 |
+
get_sae_activations,
|
473 |
+
inputs=[image_number, patches_json],
|
474 |
+
outputs=[activations_json],
|
475 |
+
api_name="get-sae-examples",
|
476 |
+
)
|
477 |
+
# semseg_image = gr.Image(label="Semantic Segmentaions", format="png")
|
478 |
+
# semseg_colors = gr.CheckboxGroup(
|
479 |
+
# label="Sem Seg Colors", choices=list(range(1, 151))
|
480 |
+
# )
|
481 |
+
|
482 |
+
# get_pred_labels_btn = gr.Button(value="Get Pred. Labels")
|
483 |
+
# get_pred_labels_btn.click(
|
484 |
+
# get_pred_labels,
|
485 |
+
# inputs=[image_number],
|
486 |
+
# outputs=[semseg_image, semseg_colors],
|
487 |
+
# api_name="get-pred-labels",
|
488 |
+
# )
|
489 |
+
|
490 |
+
# get_true_labels_btn = gr.Button(value="Get True Label")
|
491 |
+
# get_true_labels_btn.click(
|
492 |
+
# get_true_labels,
|
493 |
+
# inputs=[image_number],
|
494 |
+
# outputs=semseg_image,
|
495 |
+
# api_name="get-true-labels",
|
496 |
+
# )
|
497 |
+
|
498 |
+
# latent_numbers = [gr.Number(label=f"Latent {i + 1}") for i in range(3)]
|
499 |
+
# value_sliders = [
|
500 |
+
# gr.Slider(label=f"Value {i + 1}", minimum=-10, maximum=10) for i in range(3)
|
501 |
+
# ]
|
502 |
+
|
503 |
+
# get_modified_labels_btn = gr.Button(value="Get Modified Label")
|
504 |
+
# get_modified_labels_btn.click(
|
505 |
+
# get_modified_labels,
|
506 |
+
# inputs=[image_number] + latent_numbers + value_sliders,
|
507 |
+
# outputs=[semseg_image, semseg_colors],
|
508 |
+
# api_name="get-modified-labels",
|
509 |
+
# )
|
510 |
+
|
511 |
+
if __name__ == "__main__":
|
512 |
+
demo.launch()
|
data.py
ADDED
File without changes
|
justfile
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
build: lint
|
2 |
+
uv pip compile pyproject.toml > requirements.txt
|
3 |
+
|
4 |
+
lint: fmt
|
5 |
+
git ls-files "*.py" --cached --others --exclude-standard | xargs uv run ruff check
|
6 |
+
|
7 |
+
fmt:
|
8 |
+
git ls-files "*.py" --cached --others --exclude-standard | xargs uv run isort
|
9 |
+
git ls-files "*.py" --cached --others --exclude-standard | xargs uv run ruff format --preview
|
pyproject.toml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "saev-semantic-segmentation"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "Gradio app space for semantic segmentation with SAEs"
|
5 |
+
readme = "README.md"
|
6 |
+
requires-python = ">=3.12"
|
7 |
+
dependencies = [
|
8 |
+
"beartype>=0.19.0",
|
9 |
+
"einops>=0.8.0",
|
10 |
+
"gradio>=5.3.0",
|
11 |
+
"numpy>=2.2.2",
|
12 |
+
"torch>=2.6.0",
|
13 |
+
"torchvision>=0.21.0",
|
14 |
+
]
|
15 |
+
|
16 |
+
[tool.ruff.lint]
|
17 |
+
ignore = ["F722"]
|
18 |
+
|
19 |
+
[tool.uv.sources]
|
20 |
+
saev = { git = "https://github.com/samuelstevens/saev" }
|