Create supplementary.py
Browse files- supplementary.py +52 -0
supplementary.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
2 |
+
# Source for "Build a Large Language Model From Scratch"
|
3 |
+
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
|
4 |
+
# Code: https://github.com/rasbt/LLMs-from-scratch
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import tiktoken
|
8 |
+
from torch.utils.data import Dataset, DataLoader
|
9 |
+
|
10 |
+
|
11 |
+
class GPTDatasetV1(Dataset):
|
12 |
+
def __init__(self, txt, tokenizer, max_length, stride):
|
13 |
+
self.input_ids = []
|
14 |
+
self.target_ids = []
|
15 |
+
|
16 |
+
# Tokenize the entire text
|
17 |
+
token_ids = tokenizer.encode(txt, allowed_special={"<|endoftext|>"})
|
18 |
+
|
19 |
+
# Use a sliding window to chunk the book into overlapping sequences of max_length
|
20 |
+
for i in range(0, len(token_ids) - max_length, stride):
|
21 |
+
input_chunk = token_ids[i:i + max_length]
|
22 |
+
target_chunk = token_ids[i + 1: i + max_length + 1]
|
23 |
+
self.input_ids.append(torch.tensor(input_chunk))
|
24 |
+
self.target_ids.append(torch.tensor(target_chunk))
|
25 |
+
|
26 |
+
def __len__(self):
|
27 |
+
return len(self.input_ids)
|
28 |
+
|
29 |
+
def __getitem__(self, idx):
|
30 |
+
return self.input_ids[idx], self.target_ids[idx]
|
31 |
+
|
32 |
+
|
33 |
+
def create_dataloader_v1(txt, batch_size=4, max_length=256,
|
34 |
+
stride=128, shuffle=True, drop_last=True,
|
35 |
+
num_workers=0):
|
36 |
+
|
37 |
+
# Initialize the tokenizer
|
38 |
+
tokenizer = tiktoken.get_encoding("gpt2")
|
39 |
+
|
40 |
+
# Create dataset
|
41 |
+
dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)
|
42 |
+
|
43 |
+
# Create dataloader
|
44 |
+
dataloader = DataLoader(
|
45 |
+
dataset,
|
46 |
+
batch_size=batch_size,
|
47 |
+
shuffle=shuffle,
|
48 |
+
drop_last=drop_last,
|
49 |
+
num_workers=num_workers
|
50 |
+
)
|
51 |
+
|
52 |
+
return dataloader
|