Spaces:
Runtime error
Runtime error
# Copyright (c) 2023-2024 DeepSeek. | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy of | |
# this software and associated documentation files (the "Software"), to deal in | |
# the Software without restriction, including without limitation the rights to | |
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of | |
# the Software, and to permit persons to whom the Software is furnished to do so, | |
# subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS | |
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR | |
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
import torch | |
from attrdict import AttrDict | |
from einops import rearrange | |
from transformers import ( | |
AutoConfig, | |
AutoModelForCausalLM, | |
LlamaConfig, | |
LlamaForCausalLM, | |
PreTrainedModel, | |
) | |
from transformers.configuration_utils import PretrainedConfig | |
from deepseek_vl.models.clip_encoder import CLIPVisionTower, HybridVisionTower | |
from deepseek_vl.models.projector import MlpProjector | |
def model_name_to_cls(cls_name): | |
if "MlpProjector" in cls_name: | |
cls = MlpProjector | |
elif "CLIPVisionTower" in cls_name: | |
cls = CLIPVisionTower | |
elif "HybridVisionTower" in cls_name: | |
cls = HybridVisionTower | |
else: | |
raise ValueError(f"class_name {cls_name} is invalid.") | |
return cls | |
class VisionConfig(PretrainedConfig): | |
model_type = "vision" | |
cls: str = "" | |
params: AttrDict = {} | |
def __init__(self, **kwargs): | |
super().__init__(**kwargs) | |
self.cls = kwargs.get("cls", "") | |
if not isinstance(self.cls, str): | |
self.cls = self.cls.__name__ | |
self.params = AttrDict(kwargs.get("params", {})) | |
class AlignerConfig(PretrainedConfig): | |
model_type = "aligner" | |
cls: str = "" | |
params: AttrDict = {} | |
def __init__(self, **kwargs): | |
super().__init__(**kwargs) | |
self.cls = kwargs.get("cls", "") | |
if not isinstance(self.cls, str): | |
self.cls = self.cls.__name__ | |
self.params = AttrDict(kwargs.get("params", {})) | |
class MultiModalityConfig(PretrainedConfig): | |
model_type = "multi_modality" | |
vision_config: VisionConfig | |
aligner_config: AlignerConfig | |
language_config: LlamaConfig | |
def __init__(self, **kwargs): | |
super().__init__(**kwargs) | |
vision_config = kwargs.get("vision_config", {}) | |
self.vision_config = VisionConfig(**vision_config) | |
aligner_config = kwargs.get("aligner_config", {}) | |
self.aligner_config = AlignerConfig(**aligner_config) | |
language_config = kwargs.get("language_config", {}) | |
if isinstance(language_config, LlamaConfig): | |
self.language_config = language_config | |
else: | |
self.language_config = LlamaConfig(**language_config) | |
class MultiModalityPreTrainedModel(PreTrainedModel): | |
config_class = MultiModalityConfig | |
base_model_prefix = "multi_modality" | |
_no_split_modules = [] | |
_skip_keys_device_placement = "past_key_values" | |
class MultiModalityCausalLM(MultiModalityPreTrainedModel): | |
def __init__(self, config: MultiModalityConfig): | |
super().__init__(config) | |
vision_config = config.vision_config | |
vision_cls = model_name_to_cls(vision_config.cls) | |
self.vision_model = vision_cls(**vision_config.params) | |
aligner_config = config.aligner_config | |
aligner_cls = model_name_to_cls(aligner_config.cls) | |
self.aligner = aligner_cls(aligner_config.params) | |
language_config = config.language_config | |
self.language_model = LlamaForCausalLM(language_config) | |
def prepare_inputs_embeds( | |
self, | |
input_ids: torch.LongTensor, | |
pixel_values: torch.FloatTensor, | |
images_seq_mask: torch.LongTensor, | |
images_emb_mask: torch.LongTensor, | |
**kwargs, | |
): | |
""" | |
Args: | |
input_ids (torch.LongTensor): [b, T] | |
pixel_values (torch.FloatTensor): [b, n_images, 3, h, w] | |
images_seq_mask (torch.BoolTensor): [b, T] | |
images_emb_mask (torch.BoolTensor): [b, n_images, n_image_tokens] | |
assert torch.sum(images_seq_mask) == torch.sum(images_emb_mask) | |
Returns: | |
input_embeds (torch.Tensor): [b, T, D] | |
""" | |
bs, n = pixel_values.shape[0:2] | |
images = rearrange(pixel_values, "b n c h w -> (b n) c h w") | |
# [b x n, T2, D] | |
images_embeds = self.aligner(self.vision_model(images)) | |
# [b x n, T2, D] -> [b, n x T2, D] | |
images_embeds = rearrange(images_embeds, "(b n) t d -> b (n t) d", b=bs, n=n) | |
# [b, n, T2] -> [b, n x T2] | |
images_emb_mask = rearrange(images_emb_mask, "b n t -> b (n t)") | |
# [b, T, D] | |
input_ids[input_ids < 0] = 0 # ignore the image embeddings | |
inputs_embeds = self.language_model.get_input_embeddings()(input_ids) | |
# replace with the image embeddings | |
inputs_embeds[images_seq_mask] = images_embeds[images_emb_mask] | |
return inputs_embeds | |
AutoConfig.register("vision", VisionConfig) | |
AutoConfig.register("aligner", AlignerConfig) | |
AutoConfig.register("multi_modality", MultiModalityConfig) | |
AutoModelForCausalLM.register(MultiModalityConfig, MultiModalityCausalLM) | |