File size: 4,671 Bytes
d9a0196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
""" Chatbot
@author: NiansuhAI
@email: niansuhtech@gmail.com
"""
import numpy as np
import streamlit as st
from openai import OpenAI
import os
import sys
from dotenv import load_dotenv, dotenv_values
load_dotenv()

# initialize the client
client = OpenAI(
  base_url="https://api-inference.huggingface.co/v1",
  api_key=os.environ.get('API_KEY')  # Replace with your token
)

# Create supported models
model_links = {
    "Mixtral-8x7B": "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct",
    "Mistral-7B-Instruct-v0.1": "mistralai/Mistral-7B-Instruct-v0.1",
    "Mistral-7B-Instruct-v0.2": "mistralai/Mistral-7B-Instruct-v0.2",
    "Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3",
    "Gemma-7B": "google/gemma-1.1-7b-it",
    "Gemma-2B": "google/gemma-1.1-2b-it",
    "Zephyr-7B-β": "HuggingFaceH4/zephyr-7b-beta",
    "Phi-3-mini": "microsoft/Phi-3-mini-4k-instruct",
}

# Random dog images for error message
random_dog = ["0f476473-2d8b-415e-b944-483768418a95.jpg",
              "1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
              "526590d2-8817-4ff0-8c62-fdcba5306d02.jpg",
              "1326984c-39b0-492c-a773-f120d747a7e2.jpg",
              "42a98d03-5ed7-4b3b-af89-7c4876cb14c3.jpg",
              "8b3317ed-2083-42ac-a575-7ae45f9fdc0d.jpg",
              "ee17f54a-83ac-44a3-8a35-e89ff7153fb4.jpg",
              "027eef85-ccc1-4a66-8967-5d74f34c8bb4.jpg",
              "08f5398d-7f89-47da-a5cd-1ed74967dc1f.jpg",
              "0fd781ff-ec46-4bdc-a4e8-24f18bf07def.jpg",
              "0fb4aeee-f949-4c7b-a6d8-05bf0736bdd1.jpg",
              "6edac66e-c0de-4e69-a9d6-b2e6f6f9001b.jpg",
              "bfb9e165-c643-4993-9b3a-7e73571672a6.jpg"]

def reset_conversation():
    '''
    Resets Conversation
    '''
    st.session_state.conversation = []
    st.session_state.messages = []
    return None

# Define the available models
models = [key for key in model_links.keys()]

# Create the sidebar with the dropdown for model selection
selected_model = st.sidebar.selectbox("Select Model", models)

# Create a temperature slider
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))

# Add reset button to clear conversation
st.sidebar.button('Reset Chat', on_click=reset_conversation)  # Reset button

# Create model description
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown("*Generated content may be inaccurate or false.*")

if "prev_option" not in st.session_state:
    st.session_state.prev_option = selected_model

if st.session_state.prev_option != selected_model:
    st.session_state.messages = []
    st.session_state.prev_option = selected_model
    reset_conversation()

# Pull in the model we want to use
repo_id = model_links[selected_model]

st.subheader(f'AI - {selected_model}')

# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []

# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Accept user input
if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"):

    # Display user message in chat message container
    with st.chat_message("user"):
        st.markdown(prompt)
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})

    # Display assistant response in chat message container
    with st.chat_message("assistant"):

        try:
            stream = client.chat.completions.create(
                model=model_links[selected_model],
                messages=[
                    {"role": m["role"], "content": m["content"]}
                    for m in st.session_state.messages
                ],
                temperature=temp_values,
                stream=True,
                max_tokens=3000,
            )

            response = st.write_stream(stream)

        except Exception as e:
            response = "😵‍💫 Looks like someone unplugged something!\
                    \n Either the model space is being updated or something is down.\
                    \n\
                    \n Try again later. \
                    \n\
                    \n Here's a random pic of a 🐶:"
            st.write(response)
            random_dog_pick = 'https://random.dog/' + random_dog[np.random.randint(len(random_dog))]
            st.image(random_dog_pick)
            st.write("This was the error message:")
            st.write(e)

    st.session_state.messages.append({"role": "assistant", "content": response})