sanchit-gandhi HF staff commited on
Commit
0053fea
1 Parent(s): 6bb86a0

from original

Browse files
Files changed (2) hide show
  1. app.py +267 -0
  2. requirements.txt +5 -0
app.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import math
3
+ import os
4
+ import tempfile
5
+ import time
6
+ from multiprocessing import Pool
7
+
8
+ import gradio as gr
9
+ import jax.numpy as jnp
10
+ import numpy as np
11
+ import yt_dlp as youtube_dl
12
+ from jax.experimental.compilation_cache import compilation_cache as cc
13
+ from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE
14
+ from transformers.pipelines.audio_utils import ffmpeg_read
15
+
16
+ from whisper_jax import FlaxWhisperPipline
17
+
18
+
19
+ cc.initialize_cache("./jax_cache")
20
+ checkpoint = "openai/whisper-large-v3"
21
+
22
+ BATCH_SIZE = 32
23
+ CHUNK_LENGTH_S = 30
24
+ NUM_PROC = 32
25
+ FILE_LIMIT_MB = 1000
26
+ YT_LENGTH_LIMIT_S = 7200 # limit to 2 hour YouTube files
27
+
28
+ title = "Whisper JAX: The Fastest Whisper API ⚡️"
29
+
30
+ description = """Whisper JAX is an optimised implementation of the [Whisper model](https://huggingface.co/openai/whisper-large-v3) by OpenAI. It runs on JAX with a TPU v4-8 in the backend. Compared to PyTorch on an A100 GPU, it is over [**70x faster**](https://github.com/sanchit-gandhi/whisper-jax#benchmarks), making it the fastest Whisper API available.
31
+
32
+ Note that at peak times, you may find yourself in the queue for this demo. When you submit a request, your queue position will be shown in the top right-hand side of the demo pane. Once you reach the front of the queue, your audio file will be transcribed, with the progress displayed through a progress bar.
33
+
34
+ To skip the queue, you may wish to create your own inference endpoint, details for which can be found in the [Whisper JAX repository](https://github.com/sanchit-gandhi/whisper-jax#creating-an-endpoint).
35
+ """
36
+
37
+ article = "Whisper large-v3 model by OpenAI. Backend running JAX on a TPU v4-8 through the generous support of the [TRC](https://sites.research.google/trc/about/) programme. Whisper JAX [code](https://github.com/sanchit-gandhi/whisper-jax) and Gradio demo by 🤗 Hugging Face."
38
+
39
+ language_names = sorted(TO_LANGUAGE_CODE.keys())
40
+
41
+ logger = logging.getLogger("whisper-jax-app")
42
+ logger.setLevel(logging.INFO)
43
+ ch = logging.StreamHandler()
44
+ ch.setLevel(logging.INFO)
45
+ formatter = logging.Formatter("%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S")
46
+ ch.setFormatter(formatter)
47
+ logger.addHandler(ch)
48
+
49
+
50
+ def identity(batch):
51
+ return batch
52
+
53
+
54
+ # Copied from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50
55
+ def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
56
+ if seconds is not None:
57
+ milliseconds = round(seconds * 1000.0)
58
+
59
+ hours = milliseconds // 3_600_000
60
+ milliseconds -= hours * 3_600_000
61
+
62
+ minutes = milliseconds // 60_000
63
+ milliseconds -= minutes * 60_000
64
+
65
+ seconds = milliseconds // 1_000
66
+ milliseconds -= seconds * 1_000
67
+
68
+ hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
69
+ return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
70
+ else:
71
+ # we have a malformed timestamp so just return it as is
72
+ return seconds
73
+
74
+
75
+ if __name__ == "__main__":
76
+ pipeline = FlaxWhisperPipline(checkpoint, dtype=jnp.bfloat16, batch_size=BATCH_SIZE)
77
+ stride_length_s = CHUNK_LENGTH_S / 6
78
+ chunk_len = round(CHUNK_LENGTH_S * pipeline.feature_extractor.sampling_rate)
79
+ stride_left = stride_right = round(stride_length_s * pipeline.feature_extractor.sampling_rate)
80
+ step = chunk_len - stride_left - stride_right
81
+ pool = Pool(NUM_PROC)
82
+
83
+ # do a pre-compile step so that the first user to use the demo isn't hit with a long transcription time
84
+ logger.info("compiling forward call...")
85
+ start = time.time()
86
+ random_inputs = {
87
+ "input_features": np.ones(
88
+ (BATCH_SIZE, pipeline.model.config.num_mel_bins, 2 * pipeline.model.config.max_source_positions)
89
+ )
90
+ }
91
+ random_timestamps = pipeline.forward(random_inputs, batch_size=BATCH_SIZE, return_timestamps=True)
92
+ compile_time = time.time() - start
93
+ logger.info(f"compiled in {compile_time}s")
94
+
95
+ def tqdm_generate(inputs: dict, task: str, return_timestamps: bool, progress: gr.Progress):
96
+ inputs_len = inputs["array"].shape[0]
97
+ all_chunk_start_idx = np.arange(0, inputs_len, step)
98
+ num_samples = len(all_chunk_start_idx)
99
+ num_batches = math.ceil(num_samples / BATCH_SIZE)
100
+ dummy_batches = list(
101
+ range(num_batches)
102
+ ) # Gradio progress bar not compatible with generator, see https://github.com/gradio-app/gradio/issues/3841
103
+
104
+ dataloader = pipeline.preprocess_batch(inputs, chunk_length_s=CHUNK_LENGTH_S, batch_size=BATCH_SIZE)
105
+ progress(0, desc="Pre-processing audio file...")
106
+ logger.info("pre-processing audio file...")
107
+ dataloader = pool.map(identity, dataloader)
108
+ logger.info("done post-processing")
109
+
110
+ model_outputs = []
111
+ start_time = time.time()
112
+ logger.info("transcribing...")
113
+ # iterate over our chunked audio samples - always predict timestamps to reduce hallucinations
114
+ for batch, _ in zip(dataloader, progress.tqdm(dummy_batches, desc="Transcribing...")):
115
+ model_outputs.append(pipeline.forward(batch, batch_size=BATCH_SIZE, task=task, return_timestamps=True))
116
+ runtime = time.time() - start_time
117
+ logger.info("done transcription")
118
+
119
+ logger.info("post-processing...")
120
+ post_processed = pipeline.postprocess(model_outputs, return_timestamps=True)
121
+ text = post_processed["text"]
122
+ if return_timestamps:
123
+ timestamps = post_processed.get("chunks")
124
+ timestamps = [
125
+ f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
126
+ for chunk in timestamps
127
+ ]
128
+ text = "\n".join(str(feature) for feature in timestamps)
129
+ logger.info("done post-processing")
130
+ return text, runtime
131
+
132
+ def transcribe_chunked_audio(inputs, task, return_timestamps, progress=gr.Progress()):
133
+ progress(0, desc="Loading audio file...")
134
+ logger.info("loading audio file...")
135
+ if inputs is None:
136
+ logger.warning("No audio file")
137
+ raise gr.Error("No audio file submitted! Please upload an audio file before submitting your request.")
138
+ file_size_mb = os.stat(inputs).st_size / (1024 * 1024)
139
+ if file_size_mb > FILE_LIMIT_MB:
140
+ logger.warning("Max file size exceeded")
141
+ raise gr.Error(
142
+ f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB."
143
+ )
144
+
145
+ with open(inputs, "rb") as f:
146
+ inputs = f.read()
147
+
148
+ inputs = ffmpeg_read(inputs, pipeline.feature_extractor.sampling_rate)
149
+ inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate}
150
+ logger.info("done loading")
151
+ text, runtime = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps, progress=progress)
152
+ return text, runtime
153
+
154
+ def _return_yt_html_embed(yt_url):
155
+ video_id = yt_url.split("?v=")[-1]
156
+ HTML_str = (
157
+ f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
158
+ " </center>"
159
+ )
160
+ return HTML_str
161
+
162
+ def download_yt_audio(yt_url, filename):
163
+ info_loader = youtube_dl.YoutubeDL()
164
+ try:
165
+ info = info_loader.extract_info(yt_url, download=False)
166
+ except youtube_dl.utils.DownloadError as err:
167
+ raise gr.Error(str(err))
168
+
169
+ file_length = info["duration_string"]
170
+ file_h_m_s = file_length.split(":")
171
+ file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
172
+ if len(file_h_m_s) == 1:
173
+ file_h_m_s.insert(0, 0)
174
+ if len(file_h_m_s) == 2:
175
+ file_h_m_s.insert(0, 0)
176
+
177
+ file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
178
+ if file_length_s > YT_LENGTH_LIMIT_S:
179
+ yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
180
+ file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
181
+ raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
182
+
183
+ ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
184
+ with youtube_dl.YoutubeDL(ydl_opts) as ydl:
185
+ try:
186
+ ydl.download([yt_url])
187
+ except youtube_dl.utils.ExtractorError as err:
188
+ raise gr.Error(str(err))
189
+
190
+ def transcribe_youtube(yt_url, task, return_timestamps, progress=gr.Progress()):
191
+ progress(0, desc="Loading audio file...")
192
+ logger.info("loading youtube file...")
193
+ html_embed_str = _return_yt_html_embed(yt_url)
194
+ with tempfile.TemporaryDirectory() as tmpdirname:
195
+ filepath = os.path.join(tmpdirname, "video.mp4")
196
+ download_yt_audio(yt_url, filepath)
197
+
198
+ with open(filepath, "rb") as f:
199
+ inputs = f.read()
200
+
201
+ inputs = ffmpeg_read(inputs, pipeline.feature_extractor.sampling_rate)
202
+ inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate}
203
+ logger.info("done loading...")
204
+ text, runtime = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps, progress=progress)
205
+ return html_embed_str, text, runtime
206
+
207
+ microphone_chunked = gr.Interface(
208
+ fn=transcribe_chunked_audio,
209
+ inputs=[
210
+ gr.Audio(source="microphone", type="filepath"),
211
+ gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
212
+ gr.Checkbox(value=False, label="Return timestamps"),
213
+ ],
214
+ outputs=[
215
+ gr.Textbox(label="Transcription", show_copy_button=True),
216
+ gr.Textbox(label="Transcription Time (s)"),
217
+ ],
218
+ allow_flagging="never",
219
+ title=title,
220
+ description=description,
221
+ article=article,
222
+ )
223
+
224
+ audio_chunked = gr.Interface(
225
+ fn=transcribe_chunked_audio,
226
+ inputs=[
227
+ gr.Audio(source="upload", label="Audio file", type="filepath"),
228
+ gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
229
+ gr.Checkbox(value=False, label="Return timestamps"),
230
+ ],
231
+ outputs=[
232
+ gr.Textbox(label="Transcription", show_copy_button=True),
233
+ gr.Textbox(label="Transcription Time (s)"),
234
+ ],
235
+ allow_flagging="never",
236
+ title=title,
237
+ description=description,
238
+ article=article,
239
+ )
240
+
241
+ youtube = gr.Interface(
242
+ fn=transcribe_youtube,
243
+ inputs=[
244
+ gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
245
+ gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
246
+ gr.Checkbox(value=False, label="Return timestamps"),
247
+ ],
248
+ outputs=[
249
+ gr.HTML(label="Video"),
250
+ gr.Textbox(label="Transcription", show_copy_button=True),
251
+ gr.Textbox(label="Transcription Time (s)"),
252
+ ],
253
+ allow_flagging="never",
254
+ title=title,
255
+ examples=[["https://www.youtube.com/watch?v=m8u-18Q0s7I", "transcribe", False]],
256
+ cache_examples=False,
257
+ description=description,
258
+ article=article,
259
+ )
260
+
261
+ demo = gr.Blocks()
262
+
263
+ with demo:
264
+ gr.TabbedInterface([microphone_chunked, audio_chunked, youtube], ["Microphone", "Audio File", "YouTube"])
265
+
266
+ demo.queue(max_size=5)
267
+ demo.launch(show_api=False)
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ --find-links https://storage.googleapis.com/jax-releases/libtpu_releases.html
2
+ jax[tpu]
3
+ pip install git+https://github.com/sanchit-gandhi/whisper-jax.git
4
+ requests
5
+ yt-dlp>=2023.3.4