import base64 import math import os import time from functools import partial from multiprocessing import Pool import gradio as gr import numpy as np import pytube import requests from processing_whisper import WhisperPrePostProcessor from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE from transformers.pipelines.audio_utils import ffmpeg_read title = "Whisper JAX: The Fastest Whisper API ⚡️" description = """Whisper JAX is an optimised implementation of the [Whisper model](https://huggingface.co/openai/whisper-large-v2) by OpenAI. It runs on JAX with a TPU v4-8 in the backend. Compared to PyTorch on an A100 GPU, it is over [**70x faster**](https://github.com/sanchit-gandhi/whisper-jax#benchmarks), making it the fastest Whisper API available. Note that at peak times, you may find yourself in the queue for this demo. When you submit a request, your queue position will be shown in the top right-hand side of the demo pane. Once you reach the front of the queue, your audio file will be sent to the TPU and then transcribed, with the progress displayed through a progress bar. To skip the queue, you may wish to create your own inference endpoint, details for which can be found in the [Whisper JAX repository](https://github.com/sanchit-gandhi/whisper-jax#creating-an-endpoint). """ article = "Whisper large-v2 model by OpenAI. Backend running JAX on a TPU v4-8 through the generous support of the [TRC](https://sites.research.google/trc/about/) programme. Whisper JAX [code](https://github.com/sanchit-gandhi/whisper-jax) and Gradio demo by 🤗 Hugging Face." API_SEND_URL = os.getenv("API_SEND_URL") API_FORWARD_URL = os.getenv("API_FORWARD_URL") language_names = sorted(TO_LANGUAGE_CODE.keys()) CHUNK_LENGTH_S = 30 BATCH_SIZE = 16 NUM_PROC = 16 FILE_LIMIT_MB = 1000 def query(url, payload): response = requests.post(url, json=payload) return response.json(), response.status_code def inference(batch_id, idx, task=None, return_timestamps=False): payload = {"batch_id": batch_id, "idx": idx, "task": task, "return_timestamps": return_timestamps} data, status_code = query(API_FORWARD_URL, payload) if status_code == 200: tokens = {"tokens": np.asarray(data["tokens"])} return tokens else: gr.Error(data["detail"]) def send_chunks(batch, batch_id): feature_shape = batch["input_features"].shape batch["input_features"] = base64.b64encode(batch["input_features"].tobytes()).decode() query(API_SEND_URL, {"batch": batch, "feature_shape": feature_shape, "batch_id": batch_id}) def forward(batch_id, idx, task=None, return_timestamps=False): outputs = inference(batch_id, idx, task, return_timestamps) return outputs # Copied from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50 def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."): if seconds is not None: milliseconds = round(seconds * 1000.0) hours = milliseconds // 3_600_000 milliseconds -= hours * 3_600_000 minutes = milliseconds // 60_000 milliseconds -= minutes * 60_000 seconds = milliseconds // 1_000 milliseconds -= seconds * 1_000 hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else "" return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}" else: # we have a malformed timestamp so just return it as is return seconds if __name__ == "__main__": processor = WhisperPrePostProcessor.from_pretrained("openai/whisper-large-v2") stride_length_s = CHUNK_LENGTH_S / 6 chunk_len = round(CHUNK_LENGTH_S * processor.feature_extractor.sampling_rate) stride_left = stride_right = round(stride_length_s * processor.feature_extractor.sampling_rate) step = chunk_len - stride_left - stride_right pool = Pool(NUM_PROC) def tqdm_generate(inputs: dict, task: str, return_timestamps: bool, progress: gr.Progress): inputs_len = inputs["array"].shape[0] all_chunk_start_batch_id = np.arange(0, inputs_len, step) num_samples = len(all_chunk_start_batch_id) num_batches = math.ceil(num_samples / BATCH_SIZE) dummy_batches = list(range(num_batches)) dataloader = processor.preprocess_batch(inputs, chunk_length_s=CHUNK_LENGTH_S, batch_size=BATCH_SIZE) progress(0, desc="Sending audio to TPU...") batch_id = np.random.randint( 1000000 ) # TODO(SG): swap to an iterator - currently taking our 1 in a million chances pool.map(partial(send_chunks, batch_id=batch_id), dataloader) model_outputs = [] start_time = time.time() # iterate over our chunked audio samples for idx in progress.tqdm(dummy_batches, desc="Transcribing..."): model_outputs.append(forward(batch_id, idx, task=task, return_timestamps=return_timestamps)) runtime = time.time() - start_time post_processed = processor.postprocess(model_outputs, return_timestamps=return_timestamps) text = post_processed["text"] timestamps = post_processed.get("chunks") if timestamps is not None: timestamps = [ f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}" for chunk in timestamps ] text = "\n".join(str(feature) for feature in timestamps) return text, runtime def transcribe_chunked_audio(inputs, task, return_timestamps, progress=gr.Progress()): progress(0, desc="Loading audio file...") if inputs is None: raise gr.Error("No audio file submitted! Please upload an audio file before submitting your request.") file_size_mb = os.stat(inputs).st_size / (1024 * 1024) if file_size_mb > FILE_LIMIT_MB: raise gr.Error( f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB." ) with open(inputs, "rb") as f: inputs = f.read() inputs = ffmpeg_read(inputs, processor.feature_extractor.sampling_rate) inputs = {"array": inputs, "sampling_rate": processor.feature_extractor.sampling_rate} text, runtime = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps, progress=progress) return text, runtime def _return_yt_html_embed(yt_url): video_id = yt_url.split("?v=")[-1] HTML_str = ( f'
' "
" ) return HTML_str def transcribe_youtube(yt_url, task, return_timestamps, progress=gr.Progress(), max_filesize=75.0): progress(0, desc="Loading audio file...") html_embed_str = _return_yt_html_embed(yt_url) try: yt = pytube.YouTube(yt_url) stream = yt.streams.filter(only_audio=True)[0] except: raise gr.Error("An error occurred while loading the YouTube video. Please try again.") if stream.filesize_mb > max_filesize: raise gr.Error(f"Maximum YouTube file size is {max_filesize}MB, got {stream.filesize_mb:.2f}MB.") stream.download(filename="audio.mp3") with open("audio.mp3", "rb") as f: inputs = f.read() inputs = ffmpeg_read(inputs, processor.feature_extractor.sampling_rate) inputs = {"array": inputs, "sampling_rate": processor.feature_extractor.sampling_rate} text, runtime = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps, progress=progress) return html_embed_str, text, runtime microphone_chunked = gr.Interface( fn=transcribe_chunked_audio, inputs=[ gr.inputs.Audio(source="microphone", optional=True, type="filepath"), gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"), gr.inputs.Checkbox(default=False, label="Return timestamps"), ], outputs=[ gr.outputs.Textbox(label="Transcription").style(show_copy_button=True), gr.outputs.Textbox(label="Transcription Time (s)"), ], allow_flagging="never", title=title, description=description, article=article, ) audio_chunked = gr.Interface( fn=transcribe_chunked_audio, inputs=[ gr.inputs.Audio(source="upload", optional=True, label="Audio file", type="filepath"), gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"), gr.inputs.Checkbox(default=False, label="Return timestamps"), ], outputs=[ gr.outputs.Textbox(label="Transcription").style(show_copy_button=True), gr.outputs.Textbox(label="Transcription Time (s)"), ], allow_flagging="never", title=title, description=description, article=article, ) youtube = gr.Interface( fn=transcribe_youtube, inputs=[ gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"), gr.inputs.Checkbox(default=False, label="Return timestamps"), ], outputs=[ gr.outputs.HTML(label="Video"), gr.outputs.Textbox(label="Transcription").style(show_copy_button=True), gr.outputs.Textbox(label="Transcription Time (s)"), ], allow_flagging="never", title=title, examples=[["https://www.youtube.com/watch?v=m8u-18Q0s7I", "transcribe", False]], cache_examples=False, description=description, article=article, ) demo = gr.Blocks() with demo: gr.TabbedInterface([microphone_chunked, audio_chunked, youtube], ["Microphone", "Audio File", "YouTube"]) demo.queue(max_size=5) demo.launch(show_api=False, max_threads=10)