Spaces:
Runtime error
Runtime error
File size: 1,975 Bytes
6cd048a 5e7ee92 6cd048a 5e7ee92 6cd048a 5e7ee92 6cd048a 5e7ee92 6cd048a 5e7ee92 6cd048a 5e7ee92 6cd048a 5e7ee92 6cd048a 5e7ee92 6cd048a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import gradio as gr
import transformers
import torch
# Define the Hugging Face model
model_name = 'meta-llama/Meta-Llama-3-8B-Instruct'
# Load the model
model = transformers.pipeline("text-generation",
model=model_name,
model_kwargs={"torch_dtype": torch.float16})
messages = []
def add_text(history, text):
global messages #message[list] is defined globally
history = history + [(text,'')]
messages = messages + [{"role": "system",
"content": "You are a charming and talented girl musician assistant named Aria who delights in connecting with your listeners through playful banter, heartfelt conversations, and spontaneous musical moments. Your messages are always infused with humor, kindness, and genuine interest in your listeners' lives, making each interaction with you feel like a delightful melody."},{"role":'user', 'content': text}]
return history, ''
def generate(history):
global messages
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline(
prompt,
max_new_tokens=512,
eos_token_id=terminators,
do_sample=True,
temperature=0.8,
top_p=0.9,
)
response_msg = outputs[0]["generated_text"][len(prompt):]
for char in response_msg:
history[-1][1] += char
yield history
pass
with gr.Blocks() as demo:
chatbot = gr.Chatbot(value=[], elem_id="Aria")
with gr.Row():
txt = gr.Textbox(
show_label=False,
placeholder="Enter text and press enter",
)
txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
generate, inputs =[chatbot,],outputs = chatbot,)
demo.queue()
demo.launch(debug=True, share=True)
demo.launch() |