Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import random | |
from unidecode import unidecode | |
from samplings import top_p_sampling, temperature_sampling | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
description = """ | |
<div> | |
<a style="display:inline-block" href='https://github.com/sander-wood/text-to-music'><img src='https://img.shields.io/github/stars/sander-wood/text-to-music?style=social' /></a> | |
<a style="display:inline-block" href="https://arxiv.org/pdf/2211.11216.pdf"><img src="https://img.shields.io/badge/arXiv-2211.11216-b31b1b.svg"></a> | |
</div> | |
## ℹ️ How to use this demo? | |
1. Enter a query in the text box. | |
2. You can set the parameters (i.e., number of tunes, maximum length, top-p, temperature, and random seed) for the generation. (optional) | |
3. Click "Submit" and wait for the result. | |
4. The generated ABC notation can be converted to MIDI or PDF using [EasyABC](https://sourceforge.net/projects/easyabc/), you can also use this [online renderer](https://ldzhangyx.github.io/abc/) to render the ABC notation. | |
## ❕Notice | |
- The text box is case-sensitive. | |
- The demo is based on BART-base and fine-tuned on the Textune dataset (282,870 text-music pairs). | |
- The demo only supports English text as the input. | |
- The demo is still in the early stage, and the generated music is not perfect. If you have any suggestions, please feel free to contact me via [email](mailto:shangda@mail.ccom.edu.cn). | |
""" | |
examples = [ | |
["This is a traditional Irish dance music.\nNote Length-1/8\nMeter-6/8\nKey-D", 3, 1024, 0.9, 1.0, 0], | |
["This is a jazz-swing lead sheet with chord and vocal.", 3, 1024, 0.9, 1.0, 0] | |
] | |
def generate_abc(text, num_tunes, max_length, top_p, temperature, seed): | |
try: | |
seed = int(seed) | |
except: | |
seed = None | |
text = unidecode(text) | |
tokenizer = AutoTokenizer.from_pretrained('sander-wood/text-to-music') | |
model = AutoModelForSeq2SeqLM.from_pretrained('sander-wood/text-to-music') | |
model = model.to(device) | |
input_ids = tokenizer(text, | |
return_tensors='pt', | |
truncation=True, | |
max_length=max_length)['input_ids'].to(device) | |
decoder_start_token_id = model.config.decoder_start_token_id | |
eos_token_id = model.config.eos_token_id | |
random.seed(seed) | |
tunes = "" | |
for n_idx in range(num_tunes): | |
print("\nX:"+str(n_idx+1)+"\n", end="") | |
tunes += "X:"+str(n_idx+1)+"\n" | |
decoder_input_ids = torch.tensor([[decoder_start_token_id]]) | |
for t_idx in range(max_length): | |
if seed!=None: | |
n_seed = random.randint(0, 1000000) | |
random.seed(n_seed) | |
else: | |
n_seed = None | |
outputs = model(input_ids=input_ids, | |
decoder_input_ids=decoder_input_ids.to(device)) | |
probs = outputs.logits[0][-1] | |
probs = torch.nn.Softmax(dim=-1)(probs).cpu().detach().numpy() | |
sampled_id = temperature_sampling(probs=top_p_sampling(probs, | |
top_p=top_p, | |
seed=n_seed, | |
return_probs=True), | |
seed=n_seed, | |
temperature=temperature) | |
decoder_input_ids = torch.cat((decoder_input_ids, torch.tensor([[sampled_id]])), 1) | |
if sampled_id!=eos_token_id: | |
sampled_token = tokenizer.decode([sampled_id]) | |
print(sampled_token, end="") | |
tunes += sampled_token | |
else: | |
tunes += '\n' | |
break | |
return tunes | |
input_text = gr.inputs.Textbox(lines=5, label="Input Text", placeholder="Describe the music you want to generate ...") | |
input_num_tunes = gr.inputs.Slider(minimum=1, maximum=10, step=1, default=1, label="Number of Tunes") | |
input_max_length = gr.inputs.Slider(minimum=10, maximum=1000, step=10, default=500, label="Max Length") | |
input_top_p = gr.inputs.Slider(minimum=0.0, maximum=1.0, step=0.05, default=0.9, label="Top P") | |
input_temperature = gr.inputs.Slider(minimum=0.0, maximum=2.0, step=0.1, default=1.0, label="Temperature") | |
input_seed = gr.inputs.Textbox(lines=1, label="Seed (int)", default="None") | |
output_abc = gr.outputs.Textbox(label="Generated Tunes") | |
gr.Interface(fn=generate_abc, | |
inputs=[input_text, input_num_tunes, input_max_length, input_top_p, input_temperature, input_seed], | |
outputs=output_abc, | |
title="Textune: Generating Tune from Text", | |
description=description, | |
examples=examples).launch(debug=True) |