File size: 9,479 Bytes
2c2a2e1
 
 
 
b287f62
3198fcb
 
 
b287f62
3198fcb
2c2a2e1
c95e20d
2c2a2e1
 
 
0a4265e
 
0b06f90
0a4265e
bd048a0
2c2a2e1
 
0a4265e
 
0b06f90
c95e20d
0a4265e
0b06f90
0a4265e
 
0b06f90
0a4265e
0b06f90
0a4265e
0b06f90
0a4265e
0b06f90
 
 
 
 
0a4265e
d2803de
 
0a4265e
d2803de
0a4265e
d2803de
 
 
2c2a2e1
 
0e3e69a
2c2a2e1
 
0e3e69a
 
 
b287f62
0e3e69a
 
b287f62
0e3e69a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b287f62
0e3e69a
 
 
b287f62
d2803de
 
0e3e69a
d2803de
 
 
0e3e69a
b287f62
0e3e69a
 
 
2c2a2e1
0e3e69a
b287f62
 
 
 
 
 
0e3e69a
b287f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e3e69a
b287f62
 
 
0e3e69a
 
 
 
 
b287f62
0e3e69a
b287f62
0e3e69a
 
b287f62
 
0e3e69a
 
 
 
 
 
b287f62
0e3e69a
 
 
 
 
 
 
 
 
 
 
 
2c2a2e1
 
b287f62
2c2a2e1
 
 
b287f62
 
 
 
 
 
 
 
 
d2803de
6e95fac
0e3e69a
b287f62
 
 
1321bba
2c2a2e1
 
 
0e3e69a
2c2a2e1
b287f62
0a4265e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import gradio as gr
import torch
import random
from unidecode import unidecode
import re
import os
from tqdm import tqdm
import requests
from samplings import top_p_sampling, top_k_sampling, temperature_sampling
from transformers import GPT2Config, GPT2Model, GPT2LMHeadModel, PreTrainedModel

device = torch.device("cpu")

description = """
<div>

<a style="display:inline-block" href='https://github.com/sander-wood/tunesformer'><img src='https://img.shields.io/github/stars/sander-wood/tunesformer?style=social' /></a>
<a style="display:inline-block" href="https://huggingface.co/datasets/sander-wood/irishman"><img src="https://img.shields.io/badge/huggingface-dataset-ffcc66.svg"></a>
<a style="display:inline-block" href="https://arxiv.org/pdf/2301.02884.pdf"><img src="https://img.shields.io/badge/arXiv-2301.02884-b31b1b.svg"></a>
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/sander-wood/tunesformer?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-md-dark.svg" alt="Duplicate Space"></a>
</div>

## ℹ️ How to use this demo?
1. Enter the control codes to set the musical form of the generated music. For details, please refer to the below "Control Codes" section. (optional)
2. Enter the prompt of the generated music. You can set the control codes to set the musical form, ABC header (i.e., note length, tempo, meter, and key) and the motif of the melody. (optional)
2. You can set the parameters (i.e., number of tunes, maximum length, top-p, top-k, temperature and random seed) for the generation. (optional)
3. Click "Submit" and wait for the result.
4. The generated ABC notation can be played or edited using [EasyABC]([ABC Sheet Music Editor - EasyABC](https://easyabc.sourceforge.net/), you can also use this [Online ABC Player](https://abc.rectanglered.com/) to render the tune.

## 📝 Control Codes
Inspired by [CTRL](https://huggingface.co/ctrl), we incorporate control codes into TunesFormer to represent musical forms. These codes, positioned ahead of the ABC notation, enable users to specify the structures of the generated tunes. The following control codes are introduced:

- **S:number of sections**: determines the number of sections in the entire melody. It counts on several symbols that can be used to represent section boundaries: `[|`, `||`, `|]`, `|:`, `::`, and `:|`. In our dataset, the range is 1 to 8 (e.g., `S:1` for a single-section melody, and `S:8` for a melody with eight sections).

- **B:number of bars**: specifies the desired number of bars within a section. It counts on the bar symbol `|`. In our dataset, the range is 1 to 32 (e.g., `B:1` for a one-bar section, and `B:32` for a section with 32 bars).

- **E:edit distance similarity**: controls the similarity level between the current section $c$ and a previous section $p$ in the melody. It is based on the Levenshtein distance $lev(c,p)$ , quantifying the difference between sections for creating variations or contrasts. Mathematically, it can be expressed as:
  ```
  eds(c,p) = 1 - lev(c,p) / max(|c|,|p|)
  ```
  where $|c|$ and $|p|$ are the string lengths of the two sections. It is discretized into 11 levels, ranging from no match at all to an exact match (e.g., `E:0` for no similarity, and `E:10` for an exact match).

## ❕Caution
ABC notation is a specialized notation of representing sheet music, and it follows a specific standard format. When interacting with TunesFormer, all trained ABC notation adheres to these standard formats.

If you are unfamiliar with the details of ABC notation, we strongly recommend against manually entering ABC notation. Otherwise, the model may not recognize and generate the music correctly. Inputting incorrect formats might lead to unpredictable outputs or other issues.

A general recommendation is to adjust the desired musical structure and form through control codes and ABC header, rather than directly editing the ABC notation itself.

Please make sure to operate according to the provided formats and guidelines to fully leverage the capabilities of TunesFormer and achieve a satisfying music generation experience.
"""

class ABCTokenizer():
    def __init__(self):
        self.pad_token_id = 0
        self.bos_token_id = 2
        self.eos_token_id = 3
        self.merged_tokens = []

    def __len__(self):
        return 128+len(self.merged_tokens)
    
    def encode(self, text):
        encodings = {}
        encodings['input_ids'] = torch.tensor(self.txt2ids(text, self.merged_tokens))
        encodings['attention_mask'] = torch.tensor([1]*len(encodings['input_ids']))
        return encodings

    def decode(self, ids, skip_special_tokens=False):
        txt = ""
        for i in ids:
            if i>=128:
                if not skip_special_tokens:
                    txt += self.merged_tokens[i-128]
            elif i!=2 and i!=3:
                txt += chr(i)
        return txt

    def txt2ids(self, text, merged_tokens):
        text = unidecode(text)
        ids = [str(ord(c)) for c in text]
        if torch.max(torch.tensor([ord(c) for c in text]))>=128:
            return [128+len(self.merged_tokens)]
        txt_ids = ' '.join(ids)
        for t_idx, token in enumerate(merged_tokens):
            token_ids = [str(ord(c)) for c in token]
            token_txt_ids = ' '.join(token_ids)
            txt_ids = txt_ids.replace(token_txt_ids, str(t_idx+128))
        
        txt_ids = txt_ids.split(' ')
        txt_ids = [int(i) for i in txt_ids]
        return [self.bos_token_id]+txt_ids+[self.eos_token_id]

def generate_abc(prompt,
                 num_tunes,
                 max_length,
                 top_p,
                 top_k,
                 temperature,
                 seed):

    tokenizer = ABCTokenizer()
    config = GPT2Config(vocab_size=len(tokenizer))
    model = GPT2LMHeadModel(config).to(device)

    filename = "pytorch_model.bin"

    if os.path.exists(filename):
        print(f"Weights already exist at '{filename}'. Loading...")
    else:
        print(f"Downloading weights to '{filename}' from huggingface.co...")
        try:
            url = 'https://huggingface.co/sander-wood/tunesformer/resolve/main/pytorch_model.bin'
            response = requests.get(url, stream=True)

            total_size = int(response.headers.get('content-length', 0))
            chunk_size = 1024

            with open(filename, 'wb') as file, tqdm(
                desc=filename,
                total=total_size,
                unit='B',
                unit_scale=True,
                unit_divisor=1024,
            ) as bar:
                for data in response.iter_content(chunk_size=chunk_size):
                    size = file.write(data)
                    bar.update(size)
        except Exception as e:
            print(f"Error: {e}")
            exit()
            
    model.load_state_dict(torch.load('pytorch_model.bin'))
    model.eval()

    tunes = ""
        
    if prompt:
        ids = tokenizer.encode(prompt)['input_ids'][:-1]
    else:
        ids = torch.tensor([tokenizer.bos_token_id])

    random.seed(seed)

    print("\n"+" OUTPUT TUNES ".center(60, "#"))
    
    for i in range(num_tunes):
        tune = "X:"+str(i+1) + "\n" + prompt
        print(tune, end="")
        input_ids = ids.unsqueeze(0)
        for t_idx in range(max_length):
            if seed!=None:
                n_seed = random.randint(0, 1000000)
                random.seed(n_seed)
            else:
                n_seed = None
            outputs = model(input_ids=input_ids.to(device))
            probs = outputs.logits[0][-1]
            probs = torch.nn.Softmax(dim=-1)(probs).cpu().detach().numpy()
            probs = top_p_sampling(probs, top_p=top_p, return_probs=True)
            probs = top_k_sampling(probs, top_k=top_k, return_probs=True)
            sampled_id = temperature_sampling(probs, temperature=temperature, seed=n_seed)
            input_ids = torch.cat((input_ids, torch.tensor([[sampled_id]])), 1)
            if sampled_id!=3:
                tune += tokenizer.decode([sampled_id], skip_special_tokens=True)
                print(tune[-1], end="")
                continue
            else:
                break
        tunes += tune+"\n\n"
    
    return tunes

default_prompt = """S:2
B:9
E:4
B:9
L:1/8
M:3/4
K:D
 de |"D" """

input_prompt = gr.inputs.Textbox(lines=5, label="Prompt", default=default_prompt)
input_num_tunes = gr.inputs.Slider(minimum=1, maximum=10, step=1, default=1, label="Number of Tunes")
input_max_length = gr.inputs.Slider(minimum=64, maximum=1024, step=1, default=1024, label="Max Length")
input_top_p = gr.inputs.Slider(minimum=0.0, maximum=1.0, step=0.05, default=0.8, label="Top P")
input_top_k = gr.inputs.Slider(minimum=1, maximum=20, step=1, default=8, label="Top K")
input_temperature = gr.inputs.Slider(minimum=0.0, maximum=2.0, step=0.05, default=1.2, label="Temperature")
input_seed = gr.inputs.Textbox(lines=1, label="Seed (int)", default="None")
output_abc = gr.outputs.Textbox(label="Generated Tunes")

gr.Interface(generate_abc,
                [input_prompt, input_num_tunes, input_max_length, input_top_p, input_top_k, input_temperature, input_seed],
                output_abc,
            title="TunesFormer: Forming Irish Tunes with Control Codes by Bar Patching",
            description=description).launch()