File size: 5,918 Bytes
eca813c
 
 
 
 
 
bf6948f
eca813c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from collections import defaultdict
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
from matplotlib import cm

from PIL import Image
import numpy as np

import torch
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
from diffusers import StableDiffusionInpaintPipeline


class VirtualStagingToolV2():

    def __init__(self,
                 segmentation_version='openmmlab/upernet-convnext-tiny',
                 diffusion_version="stabilityai/stable-diffusion-2-inpainting"
                 ):

        self.segmentation_version = segmentation_version
        self.diffusion_version = diffusion_version

        self.feature_extractor = AutoImageProcessor.from_pretrained(self.segmentation_version)
        self.segmentation_model = UperNetForSemanticSegmentation.from_pretrained(self.segmentation_version)

        self.diffution_pipeline = StableDiffusionInpaintPipeline.from_pretrained(
            self.diffusion_version,
            torch_dtype=torch.float32,
        )
        self.diffution_pipeline = self.diffution_pipeline.to("cpu")

    def _predict(self, image):
        inputs = self.feature_extractor(images=image, return_tensors="pt")
        outputs = self.segmentation_model(**inputs)
        prediction = \
        self.feature_extractor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
        return prediction

    def _save_mask(self, img, prediction_array, mask_items=[]):
        mask = np.zeros_like(prediction_array, dtype=np.uint8)

        mask[np.isin(prediction_array, mask_items)] = 0
        mask[~np.isin(prediction_array, mask_items)] = 255

        #     # # Create a PIL Image object from the mask
        mask_image = Image.fromarray(mask, mode='L')
        # display(mask_image)

        # mask_image = mask_image.resize((512, 512))
        # mask_image.save(".tmp/mask_1.png", "PNG")
        # img = img.resize((512, 512))
        # img.save(".tmp/input_1.png", "PNG")
        return mask_image

    def _save_transparent_mask(self, img, prediction_array, mask_items=[]):
        mask = np.array(img)
        mask[~np.isin(prediction_array, mask_items), :] = 255
        mask_image = Image.fromarray(mask).convert('RGBA')

        # Set the transparency of the pixels corresponding to object 1 to 0 (fully transparent)
        mask_data = mask_image.getdata()
        mask_data = [(r, g, b, 0) if r == 255 else (r, g, b, 255) for (r, g, b, a) in mask_data]
        mask_image.putdata(mask_data)

        return mask_image

    def get_mask(self, image_path=None, image=None):
        if image_path:
            image = Image.open(image_path)
        else:
            if not image:
                raise ValueError("no image provided")

        # display(image)
        prediction = self._predict(image)

        label_ids = np.unique(prediction)

        mask_items = [0, 3, 5, 8, 14]

        if 1 in label_ids or 25 in label_ids:
            mask_items = [1, 2, 4, 25, 32]
            room = 'backyard'
        elif 73 in label_ids or 50 in label_ids or 61 in label_ids:
            mask_items = [0, 3, 5, 8, 14, 50, 61, 71, 118, 124, 129
                          ]
            room = 'kitchen'
        elif 37 in label_ids or 65 in label_ids or (27 in label_ids and 47 in label_ids and 70 in label_ids):
            mask_items = [0, 3, 5, 8, 14, 27, 65]
            room = 'bathroom'
        elif 7 in label_ids:
            room = 'bedroom'
        elif 23 in label_ids or 49 in label_ids:
            room = 'living room'

        label_ids_without_mask = [i for i in label_ids if i not in mask_items]

        items = [self.segmentation_model.config.id2label[i] for i in label_ids_without_mask]

        mask_image = self._save_mask(image, prediction, mask_items)
        transparent_mask_image = self._save_transparent_mask(image, prediction, mask_items)
        return mask_image, transparent_mask_image, image, items, room

    def _edit_image(self, init_image, mask_image, prompt,  # height, width,
                    number_images=1):

        init_image = init_image.resize((512, 512)).convert("RGB")
        mask_image = mask_image.resize((512, 512)).convert("RGB")

        output_images = self.diffution_pipeline(
            prompt=prompt, image=init_image, mask_image=mask_image,
            # width=width, height=height,
            num_images_per_prompt=number_images).images
        # display(output_image)
        return output_images

    def virtual_stage(self, image_path=None, image=None, style=None, color_preference=None, number_images=1):
        mask_image, transparent_mask_image, init_image, items, room = self.get_mask(image_path, image)
        if not style:
            raise ValueError('style not provided.')
        if not color_preference:
            raise ValueError('color_preference not provided.')

        if room == 'kitchen':
            items = [i for i in items if i in ['kitchen island', 'cabinet', 'shelf', 'counter', 'countertop', 'stool']]
        elif room == 'bedroom':
            items = [i for i in items if i in ['bed', 'table', 'chest of drawers', 'desk', 'armchair', 'wardrobe']]
        elif room == 'bathroom':
            items = [i for i in items if
                     i in ['shower', 'bathtub', 'chest of drawers', 'counter', 'countertop', 'sink']]

        items = ', '.join(items)
        prompt = f'{items}, high resolution, in the {style} style {room} in {color_preference}'
        print(prompt)

        output_images = self._edit_image(init_image, mask_image, prompt, number_images)

        final_output_images = []
        for output_image in output_images:
            output_image = output_image.resize(init_image.size)
            final_output_images.append(output_image)
        return final_output_images, transparent_mask_image