Spaces:
Runtime error
Runtime error
File size: 7,867 Bytes
da8d589 01e655b da8d589 01e655b da8d589 ec6a7d0 01e655b da8d589 01e655b da8d589 01e655b da8d589 01e655b b44532e 01e655b da8d589 d5b3cd8 da8d589 d5b3cd8 01e655b da8d589 01e655b da8d589 01e655b da8d589 01e655b da8d589 01e655b da8d589 01e655b da8d589 01e655b da8d589 01e655b da8d589 01e655b da8d589 01e655b d5b3cd8 01e655b da8d589 01e655b da8d589 01e655b da8d589 01e655b da8d589 01e655b da8d589 01e655b da8d589 01e655b da8d589 01e655b da8d589 01e655b da8d589 01e655b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
from box import Box
from pydub import AudioSegment
from typing import List, Union
from scipy.io.wavfile import write
import io
from modules.api.utils import calc_spk_style
from modules.ssml_parser.SSMLParser import SSMLSegment, SSMLBreak, SSMLContext
from modules.utils import rng
from modules.utils.audio import time_stretch, pitch_shift
from modules import generate_audio
from modules.normalization import text_normalize
import logging
import json
from modules.speaker import Speaker, speaker_mgr
logger = logging.getLogger(__name__)
def audio_data_to_segment(audio_data, sr):
byte_io = io.BytesIO()
write(byte_io, rate=sr, data=audio_data)
byte_io.seek(0)
return AudioSegment.from_file(byte_io, format="wav")
def combine_audio_segments(audio_segments: list[AudioSegment]) -> AudioSegment:
combined_audio = AudioSegment.empty()
for segment in audio_segments:
combined_audio += segment
return combined_audio
def apply_prosody(
audio_segment: AudioSegment, rate: float, volume: float, pitch: float
) -> AudioSegment:
if rate != 1:
audio_segment = time_stretch(audio_segment, rate)
if volume != 0:
audio_segment += volume
if pitch != 0:
audio_segment = pitch_shift(audio_segment, pitch)
return audio_segment
def to_number(value, t, default=0):
try:
number = t(value)
return number
except (ValueError, TypeError) as e:
return default
class TTSAudioSegment(Box):
text: str
temperature: float
top_P: float
top_K: int
spk: int
infer_seed: int
prompt1: str
prompt2: str
prefix: str
_type: str
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
class SynthesizeSegments:
def __init__(self, batch_size: int = 8):
self.batch_size = batch_size
self.batch_default_spk_seed = rng.np_rng()
self.batch_default_infer_seed = rng.np_rng()
def segment_to_generate_params(
self, segment: Union[SSMLSegment, SSMLBreak]
) -> TTSAudioSegment:
if isinstance(segment, SSMLBreak):
return TTSAudioSegment(_type="break")
if segment.get("params", None) is not None:
return TTSAudioSegment(**segment.get("params"))
text = segment.get("text", "")
is_end = segment.get("is_end", False)
text = str(text).strip()
attrs = segment.attrs
spk = attrs.spk
style = attrs.style
ss_params = calc_spk_style(spk, style)
if "spk" in ss_params:
spk = ss_params["spk"]
seed = to_number(attrs.seed, int, ss_params.get("seed") or -1)
top_k = to_number(attrs.top_k, int, None)
top_p = to_number(attrs.top_p, float, None)
temp = to_number(attrs.temp, float, None)
prompt1 = attrs.prompt1 or ss_params.get("prompt1")
prompt2 = attrs.prompt2 or ss_params.get("prompt2")
prefix = attrs.prefix or ss_params.get("prefix")
disable_normalize = attrs.get("normalize", "") == "False"
seg = TTSAudioSegment(
_type="voice",
text=text,
temperature=temp if temp is not None else 0.3,
top_P=top_p if top_p is not None else 0.5,
top_K=top_k if top_k is not None else 20,
spk=spk if spk else -1,
infer_seed=seed if seed else -1,
prompt1=prompt1 if prompt1 else "",
prompt2=prompt2 if prompt2 else "",
prefix=prefix if prefix else "",
)
if not disable_normalize:
seg.text = text_normalize(text, is_end=is_end)
# NOTE 每个batch的默认seed保证前后一致即使是没设置spk的情况
if seg.spk == -1:
seg.spk = self.batch_default_spk_seed
if seg.infer_seed == -1:
seg.infer_seed = self.batch_default_infer_seed
return seg
def process_break_segments(
self,
src_segments: List[SSMLBreak],
bucket_segments: List[SSMLBreak],
audio_segments: List[AudioSegment],
):
for segment in bucket_segments:
index = src_segments.index(segment)
audio_segments[index] = AudioSegment.silent(
duration=int(segment.attrs.duration)
)
def process_voice_segments(
self,
src_segments: List[SSMLSegment],
bucket: List[SSMLSegment],
audio_segments: List[AudioSegment],
):
for i in range(0, len(bucket), self.batch_size):
batch = bucket[i : i + self.batch_size]
param_arr = [self.segment_to_generate_params(segment) for segment in batch]
texts = [params.text for params in param_arr]
params = param_arr[0]
audio_datas = generate_audio.generate_audio_batch(
texts=texts,
temperature=params.temperature,
top_P=params.top_P,
top_K=params.top_K,
spk=params.spk,
infer_seed=params.infer_seed,
prompt1=params.prompt1,
prompt2=params.prompt2,
prefix=params.prefix,
)
for idx, segment in enumerate(batch):
sr, audio_data = audio_datas[idx]
rate = float(segment.get("rate", "1.0"))
volume = float(segment.get("volume", "0"))
pitch = float(segment.get("pitch", "0"))
audio_segment = audio_data_to_segment(audio_data, sr)
audio_segment = apply_prosody(audio_segment, rate, volume, pitch)
original_index = src_segments.index(segment)
audio_segments[original_index] = audio_segment
def bucket_segments(
self, segments: List[Union[SSMLSegment, SSMLBreak]]
) -> List[List[Union[SSMLSegment, SSMLBreak]]]:
buckets = {"<break>": []}
for segment in segments:
if isinstance(segment, SSMLBreak):
buckets["<break>"].append(segment)
continue
params = self.segment_to_generate_params(segment)
if isinstance(params.spk, Speaker):
params.spk = str(params.spk.id)
key = json.dumps(
{k: v for k, v in params.items() if k != "text"}, sort_keys=True
)
if key not in buckets:
buckets[key] = []
buckets[key].append(segment)
return buckets
def synthesize_segments(
self, segments: List[Union[SSMLSegment, SSMLBreak]]
) -> List[AudioSegment]:
audio_segments = [None] * len(segments)
buckets = self.bucket_segments(segments)
break_segments = buckets.pop("<break>")
self.process_break_segments(segments, break_segments, audio_segments)
buckets = list(buckets.values())
for bucket in buckets:
self.process_voice_segments(segments, bucket, audio_segments)
return audio_segments
# 示例使用
if __name__ == "__main__":
ctx1 = SSMLContext()
ctx1.spk = 1
ctx1.seed = 42
ctx1.temp = 0.1
ctx2 = SSMLContext()
ctx2.spk = 2
ctx2.seed = 42
ctx2.temp = 0.1
ssml_segments = [
SSMLSegment(text="大🍌,一条大🍌,嘿,你的感觉真的很奇妙", attrs=ctx1.copy()),
SSMLBreak(duration_ms=1000),
SSMLSegment(text="大🍉,一个大🍉,嘿,你的感觉真的很奇妙", attrs=ctx1.copy()),
SSMLSegment(text="大🍊,一个大🍊,嘿,你的感觉真的很奇妙", attrs=ctx2.copy()),
]
synthesizer = SynthesizeSegments(batch_size=2)
audio_segments = synthesizer.synthesize_segments(ssml_segments)
print(audio_segments)
combined_audio = combine_audio_segments(audio_segments)
combined_audio.export("output.wav", format="wav")
|