|
import torch |
|
import gradio as gr |
|
from transformers import TextIteratorStreamer, AutoProcessor, LlavaForConditionalGeneration |
|
from PIL import Image |
|
import threading |
|
import spaces |
|
import accelerate |
|
import time |
|
|
|
DESCRIPTION = ''' |
|
<div> |
|
<h1 style="text-align: center;">Krypton π</h1> |
|
<p>This uses an Open Source model from <a href="https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers"><b>xtuner/llava-llama-3-8b-v1_1-transformers</b></a></p> |
|
</div> |
|
''' |
|
|
|
model_id = "xtuner/llava-llama-3-8b-v1_1-transformers" |
|
model = LlavaForConditionalGeneration.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True |
|
) |
|
|
|
model.to('cuda') |
|
|
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
|
|
model.generation_config.eos_token_id = processor.tokenizer.eos_token_id |
|
|
|
@spaces.GPU(duration=120) |
|
def krypton(input, history): |
|
print(f"Input: {input}") |
|
print(f"History: {history}") |
|
|
|
if input["files"]: |
|
print("Found the image\n") |
|
image_path = input["files"][-1]["path"] if isinstance(input["files"][-1], dict) else input["files"][-1] |
|
print(f"Image path: {image_path}") |
|
else: |
|
image_path = None |
|
for hist in history: |
|
if isinstance(hist[0], tuple): |
|
image_path = hist[0][0] |
|
|
|
if not image_path: |
|
gr.Error("You need to upload an image for Krypton to work.") |
|
return |
|
|
|
try: |
|
image = Image.open(image_path) |
|
print(f"Image open: {image}") |
|
except Exception as e: |
|
print(f"Error opening image: {e}") |
|
gr.Error("Failed to open the image.") |
|
return |
|
|
|
|
|
prompt = f"user: Here is an image and a question about it.\n<image>{input['text']}\nassistant: " |
|
print("Made the prompt") |
|
|
|
try: |
|
inputs = processor(text=prompt, images=image, return_tensors='pt').to('cuda', torch.float16) |
|
print(f"Processed inputs: {inputs}") |
|
except Exception as e: |
|
print(f"Error processing inputs: {e}") |
|
gr.Error("Failed to process the inputs.") |
|
return |
|
|
|
|
|
print('About to init streamer') |
|
streamer = TextIteratorStreamer(processor.tokenizer, skip_special_tokens=False, skip_prompt=True) |
|
|
|
|
|
generation_kwargs = dict( |
|
inputs=inputs['input_ids'], |
|
attention_mask=inputs['attention_mask'], |
|
streamer=streamer, |
|
max_new_tokens=1024, |
|
do_sample=False |
|
) |
|
|
|
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs) |
|
print('Thread about to start') |
|
thread.start() |
|
|
|
buffer = "" |
|
|
|
for new_text in streamer: |
|
buffer += new_text |
|
generated_text_without_prompt = buffer |
|
|
|
yield generated_text_without_prompt |
|
|
|
|
|
chatbot = gr.Chatbot(height=600, label="Krypt AI") |
|
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter your question or upload an image.", show_label=False) |
|
|
|
with gr.Blocks(fill_height=True) as demo: |
|
gr.Markdown(DESCRIPTION) |
|
gr.ChatInterface( |
|
fn=krypton, |
|
chatbot=chatbot, |
|
fill_height=True, |
|
multimodal=True, |
|
textbox=chat_input, |
|
) |
|
|
|
demo.queue(api_open=False) |
|
demo.launch(show_api=False, share=False) |