start of krypton
Browse files- .gitignore +1 -0
- app.py +92 -0
- requirements.txt +4 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
venv/
|
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import torch
|
2 |
+
# import gradio as gr
|
3 |
+
# from transformers import pipeline, TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM
|
4 |
+
# from PIL import Image
|
5 |
+
# import requests
|
6 |
+
# import threading
|
7 |
+
|
8 |
+
DESCRIPTION = '''
|
9 |
+
<div>
|
10 |
+
<h1 style="text-align: center;">Krypton π</h1>
|
11 |
+
<p>This uses an Open Source model from <a href="https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers"><b>xtuner/llava-llama-3-8b-v1_1-transformers</b></a></p>
|
12 |
+
</div>
|
13 |
+
'''
|
14 |
+
|
15 |
+
# model_id = "xtuner/llava-llama-3-8b-v1_1-transformers"
|
16 |
+
# pipe = pipeline("image-to-text", model=model_id, device_map="auto")
|
17 |
+
# # Place transformers in hardware to prepare for process and generation
|
18 |
+
# llama_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
|
19 |
+
# llama_model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", torch_dtype=torch.float16).to('cuda')
|
20 |
+
# terminators = [
|
21 |
+
# llama_tokenizer.eos_token_id,
|
22 |
+
# llama_tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
23 |
+
# ]
|
24 |
+
|
25 |
+
# def krypton(prompt,
|
26 |
+
# history,
|
27 |
+
# input_image,
|
28 |
+
# max_new_tokens,
|
29 |
+
# temperature,
|
30 |
+
# num_beams,
|
31 |
+
# do_sample: bool=True):
|
32 |
+
# """
|
33 |
+
# Passes an image as input, places it for generation
|
34 |
+
# on pipeline and output is passed. This is multimodal
|
35 |
+
# """
|
36 |
+
# conversation = []
|
37 |
+
# for user, assistant in history:
|
38 |
+
# conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
39 |
+
# conversation.append({"role": "user", "content": prompt})
|
40 |
+
|
41 |
+
# input_ids = llama_tokenizer.apply_chat_template(conversation, return_tensors='pt').to(llama_model.device)
|
42 |
+
|
43 |
+
# streamer = TextIteratorStreamer(llama_tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
44 |
+
|
45 |
+
# llava_generation_kwargs = dict(
|
46 |
+
# input_ids=input_ids,
|
47 |
+
# streamer=streamer,
|
48 |
+
# max_new_tokens=max_new_tokens,
|
49 |
+
# num_beams=num_beams,
|
50 |
+
# do_sample=do_sample
|
51 |
+
# )
|
52 |
+
|
53 |
+
# if temperature == 0.0:
|
54 |
+
# do_sample = False
|
55 |
+
|
56 |
+
# pil_image = Image.fromarray(input_image.astype('uint8'), 'RGB')
|
57 |
+
|
58 |
+
# # Pipeline generation
|
59 |
+
# outputs = pipeline()
|
60 |
+
|
61 |
+
|
62 |
+
from transformers import pipeline
|
63 |
+
from PIL import Image
|
64 |
+
import requests
|
65 |
+
import torch
|
66 |
+
import subprocess
|
67 |
+
import gradio as gr
|
68 |
+
|
69 |
+
model_id = "xtuner/llava-llama-3-8b-v1_1-transformers"
|
70 |
+
pipe = pipeline("image-to-text", model=model_id, torch_dtype=torch.float16, device=0)
|
71 |
+
|
72 |
+
def krypton(input_image):
|
73 |
+
|
74 |
+
pil_image = Image.fromarray(input_image.astype('uint8'), 'RGB')
|
75 |
+
# image = Image.open(requests.get(url, stream=True).raw)
|
76 |
+
prompt = ("<|start_header_id|>user<|end_header_id|>\n\n<image>\nWhat are these?<|eot_id|>"
|
77 |
+
"<|start_header_id|>assistant<|end_header_id|>\n\n")
|
78 |
+
outputs = pipe(input_image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
|
79 |
+
nvidia_result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE)
|
80 |
+
return outputs[0]
|
81 |
+
|
82 |
+
with gr.Blocks(fill_height=True) as demo:
|
83 |
+
gr.Markdown(DESCRIPTION)
|
84 |
+
gr.Interface(
|
85 |
+
fn=krypton,
|
86 |
+
inputs="image",
|
87 |
+
outputs="text",
|
88 |
+
fill_height=True
|
89 |
+
)
|
90 |
+
|
91 |
+
if __name__ == "__main__":
|
92 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
gradio
|
4 |
+
numpy
|