import torch
import gradio as gr
from transformers import TextIteratorStreamer, AutoProcessor, LlavaForConditionalGeneration
from PIL import Image
import requests
import threading
import spaces
import accelerate
DESCRIPTION = '''
'''
model_id = "xtuner/llava-llama-3-8b-v1_1-transformers"
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True
).to('cuda')
processor = AutoProcessor.from_pretrained(model_id)
@spaces.GPU(duration=120)
def krypton(input_image):
pil_image = Image.fromarray(input_image.astype('uint8'), 'RGB')
# image = Image.open(requests.get(url, stream=True).raw)
prompt = ("<|start_header_id|>user<|end_header_id|>\n\n\nWhat are these?<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n")
inputs = processor(prompt, pil_image, return_tensors='pt').to('cuda', torch.float16)
outputs = model.generate(**inputs, max_new_tokens=200, do_sample=False)
output_text = processor.decode(outputs[0][:2], skip_special_tokens=True)
return output_text
with gr.Blocks(fill_height=True) as demo:
gr.Markdown(DESCRIPTION)
gr.Interface(
fn=krypton,
inputs="image",
outputs="text",
fill_height=True
)
if __name__ == "__main__":
demo.launch()