File size: 6,351 Bytes
98cded4
 
 
 
 
 
 
 
 
88e7442
3f7f93d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79ccab8
3f7f93d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
032e42d
3f7f93d
032e42d
3f7f93d
032e42d
3f7f93d
 
 
 
 
 
 
 
 
fa07661
3f7f93d
 
 
 
 
 
 
 
 
 
 
 
 
032e42d
3f7f93d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib as plt
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.preprocessing import LabelEncoder
import gradio as gr
from array import *


#from google.colab import drive
#drive.mount('/content/drive')

df_train = pd.read_csv("train_ctrUa4K.csv") #Reading the dataset in a dataframe using Pandas

df_train['Gender'].fillna("Male", inplace = True)
df_train['Married'].fillna("Yes", inplace = True)
df_train['Dependents'].fillna("0", inplace = True)
df_train['Self_Employed'].fillna("No", inplace = True)
df_train['Credit_History'].fillna(1.0, inplace = True)
df_train.isnull().sum()


def remove_outlier(col):
  sorted(col)
  Q1, Q3=col.quantile([0.25, 0.75])
  IQR=Q3-Q1
  lower_range=Q1-(1.5*IQR)
  upper_range=Q3+(1.5*IQR)
  return lower_range, upper_range

low_AI, high_AI=remove_outlier(df_train['ApplicantIncome'])
df_train['ApplicantIncome']=np.where(df_train['ApplicantIncome']>high_AI, high_AI, df_train['ApplicantIncome'])
df_train['ApplicantIncome']=np.where(df_train['ApplicantIncome']<low_AI, low_AI, df_train['ApplicantIncome'])

low_CI, high_CI=remove_outlier(df_train['CoapplicantIncome'])
df_train['CoapplicantIncome']=np.where(df_train['CoapplicantIncome']>high_CI, high_CI, df_train['CoapplicantIncome'])
df_train['CoapplicantIncome']=np.where(df_train['CoapplicantIncome']<low_CI, low_CI, df_train['CoapplicantIncome'])

low_LAT, high_LAT=remove_outlier(df_train['Loan_Amount_Term'])
df_train['Loan_Amount_Term']=np.where(df_train['Loan_Amount_Term']>high_LAT, high_LAT, df_train['Loan_Amount_Term'])
df_train['Loan_Amount_Term']=np.where(df_train['Loan_Amount_Term']<low_LAT, low_LAT, df_train['Loan_Amount_Term'])


df_train['Loan_Amount_Term'].fillna(360, inplace = True)

table = df_train.pivot_table(values='LoanAmount', index='Self_Employed' ,columns='Education', aggfunc=np.median)


def val(x):
 return table.loc[x['Self_Employed'],x['Education']]

df_train['LoanAmount'].fillna(df_train[df_train['LoanAmount'].isnull()].apply(val, axis=1), inplace=True)

df_train['Total_income']=df_train['ApplicantIncome']+df_train['CoapplicantIncome']

df_train.head()

df=df_train

label_encoder = preprocessing.LabelEncoder()
df['Gender']= label_encoder.fit_transform(df['Gender'])

df['Married']= label_encoder.fit_transform(df['Married'])
df['Education']= label_encoder.fit_transform(df['Education'])
df['Self_Employed']= label_encoder.fit_transform(df['Self_Employed'])
df['Property_Area']= label_encoder.fit_transform(df['Property_Area'])
df['Dependents']= label_encoder.fit_transform(df['Dependents'])

df.head()

x=df_train[['Gender','Married','Dependents','Education','Self_Employed', 'LoanAmount','Loan_Amount_Term','Credit_History','Property_Area', 'Total_income']]

y=df_train[['Loan_Status']]

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=4)

"""LOGISTIC REGRESSION"""

from sklearn.metrics import classification_report, confusion_matrix
import itertools
def plot_confusion_matrix(cm, classes,
                          normalize=False,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
    """
    This function prints and plots the confusion matrix.
    Normalization can be applied by setting `normalize=True`.
    """
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
        print("Normalized confusion matrix")
    else:
        print('Confusion matrix, without normalization')

    print(cm)

    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=45)
    plt.yticks(tick_marks, classes)
    fmt = '.2f' if normalize else 'd'
    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, format(cm[i, j], fmt),
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")

    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')

from sklearn.model_selection import GridSearchCV,RandomizedSearchCV
from sklearn.linear_model import LogisticRegression
#from sklearn.metrics import confusion_matrix
parametersLR={ 'penalty' : ['l1', 'l2', 'elasticnet', 'none'],
              'C': [1, 0.5, 0.1, 0.01],
              'fit_intercept': [True, False],
              'solver' : ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'],
              'random_state':[10, 50, 100, 'none']
}
LR = LogisticRegression()
#r = RandomizedSearchCV(LR,parametersLR)
g=GridSearchCV(LR, parametersLR)
g.fit(x_train, y_train)

ypred = g.predict(x_test)

def pred(Gender, Marital_Status, Dependents, Education, Self_Employed, Loan_Amount, Credit_History, Property_Area, Total_Income):
  if Gender == "Male":
    gen=1
  elif Gender =="Female":
    gen=0
  if Marital_Status=="Married":
    m=1
  elif Marital_Status=="Unmarried":
    m=0
  if Dependents=="0":
    d=0
  elif Dependents=="1":
    d=1
  elif Dependents=="2":
    d=2
  elif Dependents=="3+":
    d=3
  if Education=="Educated":
    e=1
  elif Education == "Uneducated":
    e=0
  if Self_Employed=="Yes":
    se=1
  elif Self_Employed=="No":
    se=0
  if Property_Area=="Urban":
    pa=0
  elif Property_Area=="Semi_Urban":
    pa=1
  elif Propert_Area=="Rural":
    pa=2

  l = {'Gender': [gen], 
       'Married': [m],
       'Dependents':[d],
       'Education':[e],
       'Self_Employed':[se],
       'LoanAmount':[Loan_Amount],
       'Loan_Amount_Term':[360],
       'Credit_History':[1],
       'Property_Area':[pa],
       'Total_income':[Total_Income]
       }
  df=pd.DataFrame(l)
  ans = g.predict(df)
  ans2 = ans.tolist()
  if ans2[0]=="Y":
    return "Loan Status: Approved!" 
  elif ans2[0]=="N":
    return "Loan Status: Disapproved"

iface = gr.Interface(
  fn=pred, 
  inputs=[gr.inputs.Radio(["Male", "Female"]), gr.inputs.Radio(["Married", "Unmarried"]),gr.inputs.Radio(["0", "1","2", "3+"]), gr.inputs.Radio(["Educated", "Uneducated"]), gr.inputs.Radio(["Yes", "No"]), "text", gr.inputs.Radio(["1", "0"]), gr.inputs.Radio(["Urban", "Semi_Urban", "Rural"]), "text"],
  outputs="text")
iface.launch(inline=False)