|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import fitz |
|
|
|
""" |
|
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference |
|
""" |
|
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") |
|
|
|
|
|
def extract_text_from_pdf(pdf_path): |
|
|
|
doc = fitz.open(pdf_path) |
|
text = "" |
|
|
|
|
|
for page in doc: |
|
text += page.get_text() |
|
|
|
doc.close() |
|
return text |
|
|
|
|
|
def respond(message, history, system_message, max_tokens, temperature, top_p): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
for message in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = message.choices[0].delta.content |
|
response += token |
|
print(f"Token: {token}") |
|
yield response |
|
|
|
|
|
def process_resume_and_respond(pdf_file, message, history, system_message, max_tokens, temperature, top_p): |
|
|
|
resume_text = extract_text_from_pdf(pdf_file.name) |
|
|
|
combined_message = f"Resume:\n{resume_text}\n\nUser message:\n{message}" |
|
|
|
response_gen = respond(combined_message, history, system_message, max_tokens, temperature, top_p) |
|
response = "".join([token for token in response_gen]) |
|
return response |
|
|
|
|
|
|
|
uploaded_resume_text = "" |
|
|
|
|
|
def upload_resume(pdf_file): |
|
global uploaded_resume_text |
|
uploaded_resume_text = extract_text_from_pdf(pdf_file.name) |
|
return "Resume uploaded successfully! now click on chat with job advisor right above this tab to start chatting!" |
|
|
|
|
|
def respond_with_resume(message, history, system_message, max_tokens, temperature, top_p): |
|
global uploaded_resume_text |
|
|
|
combined_message = f"Resume:\n{uploaded_resume_text}\n\nUser message:\n{message}" |
|
|
|
response_gen = respond(combined_message, history, system_message, max_tokens, temperature, top_p) |
|
|
|
response = "" |
|
for token in response_gen: |
|
response = token |
|
return response |
|
|
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
upload_interface = gr.Interface( |
|
upload_resume, |
|
inputs=gr.File(label="Upload Resume PDF"), |
|
outputs=gr.Textbox(label="Upload Status"), |
|
) |
|
|
|
chat_interface = gr.ChatInterface( |
|
respond_with_resume, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a Job Advisor Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
demo = gr.TabbedInterface( |
|
[upload_interface, chat_interface], |
|
["Upload Resume", "Chat with Job Advisor"] |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|